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Circulation statistics in three-dimensional turbulent flows
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We study the large limit of the loop-dependent characteristic functiodgh ) =(exp({r$.U-dx)), related to
the probability density functiofPDF) of the circulation around a closed contaurThe analysis is carried out
in the framework of the Martin-Siggia-Rose field theory formulation of the turbulence problem, by means of
the saddle-point technique. Axisymmetric instantons, labeled by the compengif the strain field—a
partially annealed variable in our formalism—are obtained for a circular loop ixtheplane, with radius
defined in the inertial range. Fluctuations of the velocity field around the saddle-point solutions are relevant,
leading to the Lorentzian asymptotic behaviin) ~ 1/A2. The O(1/A%) subleading correction and the asym-
metry between right and left PDF tails due to parity breaking mechanisms are also investigated.
[S1063-651%98)08609-1

PACS numbd(s): 47.27.Gs, 11.15.Kc

[. INTRODUCTION gral scales, while it turns out that for loops contained in the
inertial range the correlation between vortices cannot be ne-
The study of the statistical properties of circulation in glected, a fact that obstructs an application of the law of
fully developed turbulence has been attracting a great deal ¢irge numbers. Intermittency, as found in REf], is sig-
attention during the last few yeaf$—3]. The main motiva- naled at the tails of the circulation PDFs, which are fitted by
tion relies on the emergent picture of turbulence as a phestretched exponentials lik€(I") ~exp(—B|T|*), where a
nomenon intrinsically related to the dynamics of vorticity ~1 i the inertial range and=2 in the integral scales. On
filaments, clearly observed for the first time in direct numeri-the other hand, the circulation PDF cores are Gaussian, as
cal simulations of the Navier-Stokes equati¢pA$ Filamen- one could expect.
tary structures seem to have, in fact, a fundamental place in 5, important conceptual point, raised in the same numeri-
the hierarchy of eddy fluctuations, as advanced in a recent.| simulation and related to the determination lof is

phenomenological work of She andegue[5], where mul- whether the moments df are independent or not from the

tifractal exponents of velocity structure functions were pre- . : . o
dicted to very accurate precision. form of velocity correlation functions. In order to fifd'<),

An earlier theoretical analysis of the problem of circula- for instance, it may be useless to know the two-point corre-

tion statistics was attempted by Migddl], who proposed, lation function(v ,(x,t)v 5(x,t)), since the contour integra-
using functional methods originally devised for the investi-tions which appear in the definition of the square of the cir-
gation of gauge theories, that in the inertial range the probeulation and the average over realizations of the random
ability density function(PDF) of the circulationI’, P(I'),  velocity field may not commute.
evaluated for a closed contoay should depend uniquely on Our aim in the present work is to study the problem of
the scaling variabld’ /A%~ 1'% where A is the minimal circulation statistics in the inertial range through the Martin-
area enclosed by andk is an unknown parameter. It was Siggia-RoséMSR) techniqud6]. In spite of the many years
initially thought, in order to computk, that the central limit passed since its advent, only recently interesting results were
theorem could be evoked to regdrdas a random Gaussian obtained from the MSR formalism, concerning the computa-
variable obtained from the contributions of many indepen-ion of intermittency effects in problems like turbulence in
dent vortices. Using, then, the definition of circulation, the Burgers model and in the transport of a passive scalar
[7,8]. The basic tool employed in these works is the saddle-
R point method, where instanton configurations and fluctua-
I'= jg v-dx, (1.))  tions around them are assumed to contribute in a significant
¢ way to the evaluation of the MSR functional. As we will see,
e e . a computation carried along these lines will give us non-
and the Kolmogorov scaling law(|v(x)—v(y)[)~[X  Gaussian tails for the circulation PDF, with stretching expo-
—y|*3, a simple guess would ble=3/2, leading to(T'") nenta=1, in reasonable agreement with the numerical find-
~A2"3We now know, however, from a numerical analysisings commented above.
by Caoet al.[2], that although there is some support to the This paper is organized as follows. In Sec. Il the basic
minimal area conjecture and the general existence of a scablements of our formalism are set. We define the MSR path-
ing variable, as defined above, the Gaussian description afitegral expression from which the circulation PDF may be
the circulation statistics in the inertial range and the “Kol- derived, and work out its instanton solutions. The saddle-
mogorov” exponenk=3/2 are both ruled outhe numerical point action is then computed. In Sec. Ill we move to the
results indicat&k<<3/2). Gaussianity holds only in the inte- next natural step, which is the study of fluctuations around
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the saddle-point solutions. We find that fluctuations contrib-side of Eq.(2.3). At a later stage we will get back to the
ute in an essential way to the asymptotic form of the MSRoriginal definition ofA. The MSR formalisni6] allows us to
functional. In Sec. IV we investigate subleading correctionswrite the path-integral expression

to the asymptotic expression, induced by snfafid Gauss-

ian) fluctuations of the circulation. As a result, we establish, -

for the PDF of the circulation, a relation between the width Z()\):f DvDvDPDQexp(—S), (2.9
of its Gaussian core and the tail decaying paramgtein

Sec. V we study the structure of asymmetric PDFs, due tqynere

parity breaking mechanisms, like turbulence in rotating sys-

tems or under the action of parity breaking external forces. o

We comment on our results in Sec. VI pointing out direc- S=—if d3xdt[v (v .+ vB&Bva—Vﬁzva-f- 3,P)
tions of future research. In the Appendixes, we discuss in

more detail computations which underlie some of the results 1 4= 3o n =
presented in the bulk of the paper. +Qdv,]+ Ef dtd xd*X"v o(X,t)
IIl. INSTANTONS IN THE MSR APPROACH XD (X=X v (X", 1) = AT (2.6)

As is largely known, inertial range properties of three-
dimensional turbulence may be modeled by the stochasti
Navier-Stokes equatiorf9],

The MSR technique may be used to derive, in an alterna-
five way, the Wyld diagrammatic expansigftl] for the
computation of correlation functions of the velocity field,

OV QU g0 0=~ 3P+ 1320 4 T obtained directly from the stochastic equatiai@sl). This
(2.2 expansion is constructed by taking the nonlinear term in the
9v.=0 Navier-Stokes equations, related to convection, as a pertur-
av¥ a 1

bation. For this reason, the perturbative MSR-Wyld approach
has been criticized along the years, as an inappropriate tool
to deal with the singular configurations of the velocity field,
which are fundamental in turbulence. However, the advan-
(f (X £))=0 tage of the MSR formalism is that nonperturbative issues
ar ' may be addressed in principle, if one knows how to find
specific configurations of the flow that could represent rel-
evant contributions to the functional integration fB¢\).

where thea=1,2,3 and the Gaussian random forfqpé)?,t)
is defined by

(Fa(X,Df g(X"1"))=D y5(X—X") S(t—t")

Ix—x'|2 This is precisely the task for which the saddle-point method
=Doexp< - 5 ) Oapd(t—t"). is devised.
L The role of theP andQ fields in the above path-integral

(2.2 summation is just to assure thagv,,=d,0,=0. These in-
compressibility conditions are in fact two of the four saddle-

Above, L is the typical correlation length of the energy point equations obtained from the actign viz.,
pumping mechanisms, acting at large scales. The other im-
portant length in the problem, according to Kolmogorov S
theory[10], is 7~ »**—0, the microscopic scale where vis- 50 90 4=0, (2.7)
cosity effects come into play.

From the stochastic Navier-Stokes equations one may try

to obtain, in principle, any velocity correlation function. We ﬁz& 0 .=0. 2.9
are particularly interested to study the characteristic func- oP e
tional

The other two saddle-point equations are given by

Z(\)=(expirl)), (2.3
. . . . . oS . . . R R
wherel is the circulation evaluated at tinte=0, as given 5 =1 (0 o=V pda0 gV g0 g0 o+ V9?0 o+ 3,Q)
by Eg. (1.1). The contourc used in the definition of" is Va
taken here to be the circumferenc®+y?=R?, with z=0, ST
oriented in the counterclockwise direction. A basic condition -\ 5 =0, (2.9
in our analysis is thaR is a length contained in the inertial @
range, that isy<R<L. The PDF for the circulation may be 55
written from the loop functional as ?:i(atva—’_vﬂ&ﬁva_ % ,+3,P)
vO(

1 ©
P(I')= 2_f drexp(—iNI)Z(N). (2.9 . S
TS e —f d3x’DaB(|x—x’|)vﬁ(x’,t)=0. (2.10
It is appropriate, for the computations which will follow, to
consider the analytical mapping— —i\ in the right-hand We have
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o =ijgv (x’,0dx, io-g +(a’50§+a'ga's)
Su, Ovg Jo BT TR dt 78 ap
X . > A =
=635ar—'g5(rl—R)5(Z)5(t), (2.11) —If 43X, D (IX))0,(X,1)=0, (2.14
1

wherer , =(x?+y?)¥2. The importance of the saddle-point where we have defined
equations is that they provide a systematic way to study the
large N limit of Z(\). However, the saddle-point action 1

computed in this way necessarily depends)ofin a way Uzﬁzi(0“5+oﬁﬂ)’ (2.19
incompatible with observational resultg]. In order to un-

derstand it, we observe that the saddle-point equations are —

invariant under the scaling transformations—h?y, t azﬁzz(oaﬁ—oﬁa), (2.16

—~h Y%, y,—~h"%,, v,—~hv,,P—hP, Q—h%®Q, and

A—h\. These relations imply that the saddle-point action 1
has the general forrg®=\%%f(\~Y2y). Since we expect 915D apy(IXD)= 515D ay(IX]) = 3,D g(IXD]. (2.17)
to have finite answers in the limit of vanishing viscosity, it ' 2
follows thatS(®~\%?2 This dependence on is exactly the

one found in Burgers turbulence for the statistics of velocity
differences[7,12], which we know not to reproduce, even
qualitatively, the PDFs of the circulation in three dimen-
sions. A similar difficulty was in fact noticed in the investi-
gation of velocity structure functions in incompressible tur-

An important remark is that Eq2.12) is not assumed to
represent a direct modeling of the velocity field in sustained
turbulence, which we know to be associated with many dif-
ferent length scales and singular structures. The idea of the
instanton method, as advanced by Falkowthal. [8], is in
bulence by means of the saddle-point metf@jdIn order to fact to consider, in the MSR framework, smooth configura-

tions and perturbations around them that may condense some

find physically meaningful PDF tails of the circulation, a . X < ; .
solution of this problem will be pursued here, based on thdnformation on the statistics of the stroigtermitten) fluc-

definition of an additional field in the MSR path integral tuations of the VelOCity field. The situation here is analogous

parametrizing an infinite family of saddle-point configura- ©© the well-known instanton approach to the double well po-

tions. tential in qguantum mechani¢44], where instantons are ob-
We would be tempted to study the above saddle-poin{ained as saddle-point solutions, yielding extremes of the Eu-

equations by first eliminating the andQ fields in Eqs(2.9) clidean action. It is clear in that case that the smooth kink/
and(2.10 with the help of Eqs(2.7) and(2.8). All nonlinear  antikink form of the instanton configurations cannot be taken

terms in Eqs.(2.9 and (2.10 would consequently appear as a direct representation of the quantum-mechanical dynam-

projected on transverse modes through the use of the tenss> VﬂhiCh hgsh a picture asha surg Iover particle paths V‘gth
[l =0 2(3,95— 5.5). However, this is not an adequate COMPIEX weights exi). I the turbulence context, instea

procedure to follow, in view of the simplifications inherent of transforming tir_ne into an imaginary variable as i_s done in
in the implementation of the saddle-point method to theduantum mechanics, we look for saddle-point solutions, con-

MSR formalism. The central point is that we will be dealing SI9€1ing, in the MSR action, the analytical mappikg-
with linear approximations for the velocity field, as a conse-~ 1} A deeper analogy, which should also be noted, is pro-
quence of the small raditR of the contourc, in comparison vided by_ the pheno.me.non _of localization in condensed mat-
with the large scale length. We have, thus, ter physws. There is, in t_hls case, a functional mtegral' fpr—
malism, where smooth instantons may be found, giving

>4y — expressions for the tails of the density of electron stgt&s
ValX)=0p(DXg, 212 e similarity with the turbulence problem is a strong one:
with = ,0,,=0 (due tod,v,=0). Coordinate-independent While in the condensed matter system localized wave func-

terms are not written above, since we may impose, frorﬁions define some multifractal set, the same phenomenon
invariance under the group of time-dependent translationgakes place in turbulence, regarding the fluctuations of the
the saddle-point solution to satisfy,(x=01)=0 (see Ap- velocity field. Also, the limitations of the instanton method

pendix A). Using Eq.(2.12 we observe that expressions like 3¢ exactly the same in both problems. Either in localization

I, ,0.,0.0,4, related to the global nature of the flow, would or in turbulenc_:e the core of the dgnsity of states or of th_e
notﬁbg pyreﬂcisely defined. Agsimple way out of this probIem,PDFS’ respectively, cannot be obtained from the saddle-point

gechnique. To understand it in our analysis of the statistics of

circulation, we note that for large values »fthe functional

Z(\) gets its more relevant contributions from the tails of the
P=A,XXg, (2.13 circulation PDF. At the core, where the PDF is essentially

stationary, fluctuations of exi") will tend to produce de-

so thatd,P exactly cancels in Eq(2.10 any symmetric structive interference.

tensor acting on the spatial coordinates, which would appear Our problem has been reduced so far to an analysis of

in the linear approximation. Therefore E(.10 may be EQs.(2.8), (2.9), and(2.14), where in the second equation the

written as an equation for the time evolution of the antisym-velocity field is given by Eq(2.12). Since these equations

metric part of the strain field, are invariant under rotations around thaxis, it is interest-

equationd 13], is to write the pressure as a quadratic form,
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ing to look for axisymmetric solutions. In the linear approxi- aboveé functional is in fact a “smeared” field, given by the
mation, the most general form of an axisymmetric strain fieldcontributions of wave numbels<R 1.
is given by The saddle-point method is to be used in the first step of

computation(where aiﬁ is fixed) involving the actionS

a(t)  b(t) 0 rather thanS. The only modification of the previous saddle-

o(t)=| —b(t) a(t) o | (2.18  point equation$2.7)—(2.10), as may be readily seen fro8)
0 0 —2a(t) is on EQ.(2.9), which must be replaced now by
The above form otr(t) has a simple hydrodynamical inter- 55

pretation. Takinga>0, for instance, streamlines are just ex- = {000 0=V g0V g+ U g0 o+ VIV,
panding spirals which approach in an exponential waythe
plane from both regiong>0 andz<O0. It is important to - ST

note thato,(t)= — 2a(t), which has the dimensions of the +3,Q+dp[8(2)Qpal} — N 5.0 (221
inverse of time, plays the role of an arbitrary external func- “
tion in Eq.(2.14. In other words, vorticity is controlled by
stretch, associated @(t). We should try to find instantons
(the solutions of the saddle-point equatipiier any well-

behaved functiora(t) [with a(t)—0 as|t|—] and then

v,

We also have an additional equation, associated to variations
of the fieldQ,,

sum up their contributions in the path-integral expression for S . 24 _o
Z(\). This suggests an alternative strategy of computation, 50 . ~10dav glz=0F dpvals=0— Tap(1)]=0.
where a(t), or some variable related to it, would appear op (2.22

from the very start in the MSR formalism as a field labeling

families of velocity configurations. There are, in fact, manyThjs equation, however, is beforehand solved by E242)
different ways to implement this idea, distinguished essenznq(2.18. Using Egs.(2.11), (2.12 and taking the limit of

tially by computational convenience. Our choice consists in/anjshing viscosity, we may write E¢2.21) as
writing Eq. (2.5), up to a normalization factor, as

Z(\) J’DAD DPDQDo® 0D o= 0ol g+ T3, X300 o 0,Q+ 95 3(2) Q)
= vDvu lo

X
: B
—iNeg, 52 8(r, —R)S8(2)8(t). (2.23
X 8940 glz=0+ IpV alzmo— 205 slEXH —S) T

We have, therefore, a closed system of coupled equations,
given by Eqs(2.9), (2.14), and(2.23. It is important to state

the boundary conditions that the solutions of these equations
whereo;, ;= o5, 5(X,,t) andéaﬁ=(~gaﬁ(x,y,t) are symmet- have to satisfy. Since the viscosity term appears in(EQ1)

=fDan DuDvDPDQDOexp —95), (2.19

ric matrices and with the opposite sign, compared to the one in the Navier-
Stokes equations, we impose, in order to avoid an unbounded
i . LN 2 A~ = . .
Z_ac_ o ~ growing of the fieldv ,(x,t), thatv ,(x,t>0)=0. In this
S=S Zf dxdydtQp(x.y.t) way, Eq.(2.23 leads us to

X[&avﬁ|2:0+ &ﬁva|2:0—20'zﬁ(x,y,t)]. (2.20 o X
_ _ _ Da(X,07)=iNegp, L 8(r, —R)3(2). (2.2

The meaning of Eq(2.19 is that we sum up the contribu- re

tions to the path-integral expression in two steps: first by

considering velocity configurations which satisfxvﬁ|z:0 Also, we require that ,(x,t) —0 ast— —. The equation
_ s f + s PR

+dpv ol z-0=207,4(X,y,1), for a given fieldo, ;. The sum-  for ;, (x.t) may be solved through the ansatz

mation over the fields, ; is performed afterwards. The lin-

ear approximation for the velocity field corresponds, thus, to o

fields a'zﬁ with slow dependence on theandy coordinates, U o(X,t) = €35,X50(2) > ca(Or 18 (r, —R),
within the length scale of the order &, while axial sym- n=0

metry, a condition related to large valuesof is imposed (2.29

here as a restriction on the configurations (f:chB(t). More
precisely, we will consider the sum in E.19 as carried
over the space of axisymmetric fieIdSrZB(t)=(5aB
—33d,303)a(t), in accordance with Eq2.18. This corre-

where 6"(r, —R)=d"8(r, —R)/dr" . The boundary con-
dition (2.24 reads now

sponds to replacingiD o*(t) by fDa(t) in Eq.(2.19. How- Co(07)=in,
ever, this constraint has to be applied with care, since its
meaning is linked to configurations of the velocity field de- cn(07)=0 for n>0. (2.26

fined at length scales larger than the loop’s radtud o state
it in a different way, the velocity field that enters in the We find, substituting Eg(2.25 in Eq. (2.23,
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d : R\? -
&Co+aco=0, b+2ab=—2wD0)\(E) e2/odt'at o(—t). (2.3

In order to have well-behaved solutions fer — o, we see,
gicntan+lic,+ac, =0 for n>0  (2.27  from Eq. (2.36), that it is necessary to have in this limit
[tdt’a(t’)— —«. Motivated by the general idea of a gradi-

andéaﬁ=(5a5— 51135[33)6, with (below, a=1,2) ent .expansion, we will restri_ct our study, as a firs? appr.oxi-
mation, to the effects of time-independent configurations
~ * given bya(t)=a>0. Correspondingly, in the definition of
9,0=—2b(t)x, > cy(OHr1"sM(r, —R), (228  Z(\), Eq.(2.19, we will have
n=0
Q=0. (2.29 f Dcrs—>f da. (2.39
0

The infinite set of Eqs(2.27) as well as Eq.(2.28 are

solved, respectively, by A possible physical interpretation of the above replacement

is related to the experimental observation of circulation as a
iN o N more intermittent random variable than longitudinal velocity
Co(t)= e Jodtat) (e foda—)n (239  differenceg2]. Thus, in the decomposition of the strain ten-
n: sor (2.18 into symmetric and antisymmetric parts, the latter
is actually the quantity which fluctuates more strongly in the
“background” defined by the partially annealed fiel¢t). It
is worth observing this kind of interpretation is usual in a
. large variety of systems characterized by different time
=—2iAb(t)0(r, — Relodtalt’)) (2.31) scales, like spin glasses, for instance, in the situation where
the dynamics of spin couplings is slow—~but not negligible—
where 6(x)=(1+|x|/x)/2 is the step function. Taking Eq. when compared to the typical time for spins to reach thermal
(2.30, the infinite summation in Eq2.25 may be exactly equilibrium[16].

Q(ry )= —2b(t)n§0 Cn(t)ﬂLdSS”g”)(&— R)

performed. We find the compact result ter 0, Equation(2.36) may be easily solved, yielding
. - X . Do\ [ R) 2
va(x,t)zixeg,gar—ﬁ 8(r, —ReM ) 52). (2.3 b(t)=— 772;’ (E) g2t (2.39
1

In order to get some intuition on the singularity in the aboveAs could be anticipated, we see that E238 represents the
expression, we just recall that the quadratic termofgfx,t) well-known phenomenon of vorticity amplification by vortex
in the MSR action is obtained from stretching, controlled by the paramegerAlthough viscosity
does not enter in this expression, vortex stretching is
bounded, which would not occur in an inviscid flow. The
> ' (2.33 explanation for this behavior of the instanton solution fol-
f lows from the fact that viscosity has been taken into account

where the brackets denote an average over realizations of tiean implicit way, through Eq(2.24), which defines ,(x,t)

stochastic force field‘a()z,t). Substituting in this average at the initial timet=0, so that the saddle-point solutions

~ e . ) vanish ast— +o. The peculiar property of Eq2.39 that
vo(x.1) by the saddle-point solutiof®.32), we find will be important in our subsequent considerations is just the

o R R factor \/a, relating\ and the vortex stretching parameter
f d3xdtva(x,t)fa(x,t)~f dt % dx,f(x,t), to the amplitude ob(t).
(2.34 The saddle-point solutions we have found zﬁgl()?,t) and
v.(X,t) may be substituted now in the acti&to give
where the loop integral is taken around the circumference of
radiusr , = Rexg[ [dt'a(t’)]. We see that Eq2.34) is in fact 2D AR* \2
Lo . . . JO0)— _ o
nonvanishing for configurations of the force field that may SH= o2 a’
produce some circulation around the loop=R, att=0,
through convective processes in the fluid.
Let us consider now Eq(2.14 for the velocity field,
which, using the strain fiel¢2.18, may be written as

<e><p(if d3xdto (X, 1) f ,(X,t)

(2.39

We note that a straight application of this result would lead
to

, (s . » m?DoR* \2
b+2ab+|fdxa[lvDZ]y(M)vy(x,t):O. (2.35 Z(A)~Jodaex T2 a) (2.40

Substituting the solution fop y(f,t), in the above expres- which is divergent as the integration region extendsato
sion, we obtain —o (above,\ has been substituted by). This “ultravio-
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let” d_ivergence is in fact n.aturally regularized when we also 13511)(>2,t)= @ (0,)8(r, —ReN 8(2), (3.4
take into account fluctuations around the saddle-point solu-
tions, as shown next. where 6 is the azimuthal angle in cylindrical coordinates.
Sincee,(6,t)=¢,(0+2m,t), we may write the Fourier se-
Il ANALYSIS OF FLUCTUATIONS ries ¢, (0,1)=27__ oM (t)exp(nd). The incompressibility

Denoting the saddle-point fields and fluctuations aroundtondition (3.3b), however, implies that{’=0, for n#0,
them by the indexe§(0)’ and (1), respectively, we and gogo)(t)z5c(t)egaﬁx,3/rL. Therefore we are only al-
write lowed to consider amplitude fluctuations as

v ty=1, 0y Dy N R X
V(X Zvo () Fug (), b(X1)= Be(t) ea - 81, ~REM3(2). (3.5
1

0D =02(x,t)+0P(x1),
An important remark is that the above expression is valid

P(x,t)=PO(x,t)+ PD(x,t), (3.1  exclusively for negative times, sina¢”)(x,t>0)=0.
We could also take into account perturbations of the ring
Q(f,t)=Q(°>(>Z,t)+Q(1>(>Z,t), that would deform its shape, but a little reflection shows they

may be neglected. Consider, for instance, perturbations of

Qaﬁ(X,y,t)Zégoﬂ)(X,y,t)JrQ%(X,y,t). the ring in thex-y plane, given by a fieldy(6,t):

The action is expressed &8s S +S1), whereS(© is given V(X )= @ (r ., 0;7)3(r, — R+ 7(0,1))8(2),
by Eg. (2.39, and we have, up to second order in the per- 3.6
turbations,

where the above amplitudg, is a functional of»(#6,t) and
. . satisfies tap,(r, ,6; 7=0)=iNez,pXz/r, . Up to first order
SV = —if dgxdt[v(al)(&tvgyl)-f—U(O)&ngyl)-l—v(ﬁl)z?ﬁv(ao) in 7(6,t) we may write

W g PO 45O,y (1) L Mg D - s
VI AP0 (v dgr ) T QT ] v;”(x,t):“ Ao n(6".1) 5 gy ®alls 6:7=0)

i ~
- Ef dxdydtQ(d,05" + 0] -0 ‘ , Xp
X 8(r, —Re")8(2) +ikegap - n(6,1)
1

+ L d d3"d3"/'\(1) v D v — v\ (D)t
> td°Xd°X v, (X, 1) D o g(X—X")v 5" (X", 1). x 8V (r, —ReM) (). (3.7

(32 The first term in the right-hand side of this equation may be
absorbed by fluctuations given by E@.4). Regarding the
second term, the same steps that led to(Bdp) give us now
dem(6,t)=0, that is, the ring is deformed in they plane
Hhrough uniform radius variations. It is clear, due to the de-
rivative of the § function in Eq.(3.7), that Eq.(3.5) is in fact

We included in(3.2), for the sake of completeness, the vis-
cosity term, which in fact will be assumed to vanish in the
next computationgnevertheless, we have to keep in mind
that viscosity, as discussed before, plays an important role i

the choice of the boundary condition ff’{;o)(x’t) att=0]. 4 more relevant contribution at lower wave numbers. The
The integrations oveP™®, Q®), andQ{) imply that same reasoning may be extended to generic perturbations of
. the ring’s shape. The approximation of neglecting deforma-
I (X,1)=0, (3.33  tions of the ring would be inconsistent if there were small
scale fluctuations of the velocity field taking place in a
aa5511>(>2,t)=0, (3.3b neighborhood of the ring, as we would conclude from the
coupling of typevv in the action(3.2). However, as will be
[ﬂav(ﬁl)(i,t)+(9Bv£})(>2,t)]|220=0. (3.30 shown in a moment, small scale fluctuations of the velocity

field are contained only in some small compact region sur-
If perturbations are written in a form which satisfies theserounding the origin.
relations, as we will do, then the field®), Q1) andé(lg In view of the action of random forces at large length
1 — 1 L 1 o 71 . . . _
may be taken out frorB"). We are interested to find expres- SC""'?S K.<L » In Fourier spacg we keep, as a'f|rs't ap
i (1),2 ~(1)2 ) ) i proximation, the linear dependence of the velocity field on
sions forv,’(x,t) andv,”(x,t), which describe effective he gpatial coordinates, introducing fluctuations of the strain
degrees of freedom. field as
The singularity ofo E?’()Z,t) atr, =Reé andz=0, given
by Eq. (2.32), represents a ring that shrinks to a pointtas v(al)(f,t)=aa(t)+wﬁ(t)eaﬁyxy. (3.9
——o0, One could imagine local fluctuations around
ﬁ(ao)(i,t) given by variations of the vector field defined on This linear expression is the only one compatible with the
the ring, constraintg3.33 and(3.30.
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If we take dc(t)= const, it is not difficult to see, substi- The extra supply of power density provided by the pres-
tuting Egs.(3.5 and (3.8) in Eq. (3.2, that3Y will not  sureP® and the stochastic forck) is
depend ora,(t) or wg(t) for t<0. In other words, we have N L
defined a “zero mode” configuration, which would render Pr=(vP(=a,PO+iD)). (3.12
the MSR path-integral completely independent of large scale
fluctuations of the velocity field. The solution of this prob- Since the equations and constraints zﬁ(fﬂ')(i,t) are linear,
lem consists in considering generic time-dependent variathey are invariant under the substitutions
tions &c(t), precisely as we are doing, in accordance with
the usual procedure for the treatment of zero modes associ- v'Y(x,t)—D¥% M (x,t),PV(x,t)—-DL2PD(x,t),
ated to instantongl4].

Relations(3.5) and(3.8) were both defined through argu- f(al)()'(’,t)_)DéIZf(al)()‘(’,t). (3.13
ments based on the assumption that fluctuations around the
saddle point have to be local. We observe, however, that theyne factorD, which appears in the two-point correlation
QO not exhaust, in principle, the effective form of perturba-function of the random forcéS}) is now replaced by unity.
tions, which may occur also aE smajller length scﬁales. In Ordef:rom Egs.(3.9 and(3.12 we get, takingy—0,
to achieve full expressions farV(x,t) andvM(x,t), it is
necessary to take a closer look at fluctuations associated to
the dynamics of the actioB). Disregarding the coupling
v OwPa)—a self-consistent approximation, as we
will see—one may note th&™), which governs the random +

behavior ofv (V(x,t), is the MSR field theory obtained from
the stochastic equations

3 1
Do lplzzv([go)ﬁﬁ(<v(al)v(al)>)

N -

(900 + 0@ 0Py, (314

At x=0 we obtain

atv(al)_i_U;go)aﬁv(al)_'_v(ﬂl)&ﬁv(ao):Vazv(al)_aap(l)_,’_f(al) - .
3.9 Do "Pi(X=0)=(8us—38a35p3)a(v} (0)v(0)).

3.1

and the constraint$3.33 and (3.39. The random force 319
fO(x,1), like f,(X,1), is defined by Eq(2.2). A criterionto ~ Since a>(Do\)™%, we  have v'0(x,t)=a(x,—35,32),
find the region of space where small scale fluctuations detewhich means that the stochastic equati8®) involves es-
mined by Eq.(3.9 may effectively occur is based on an sentially only two dimensional parameters: and L.
analysis of the local power supplied to the fluid by the pres-Through simple dimensional analysis we may write
sure and external forces. In the absence of perturbations, the c

. . . . . O = . N N @
laminar flow is described by the velocity fiedd?)(x,t), with WP R P ))= B (3.16
power density a

)2 )2 whereC,,; is a dimensionless constant. We find, from Egs.
Po=vy (X,D)| —doPT(X,1) (3.19 and(3.16),

+ixBJ d®X 315D o ,(IX DOV (X' 1) P1=CPo. (317

wherec=C;;+ Cy,—2C33. From rotation symmetry around
=[a%+3b(t)?]arf —8a°z, (3.10  thez axis, we haveC;;=C,,, and consequentlg=2(Cy,
o _ ) —C33). Due to the strong anisotropy in the system described

whereb(t) is given by Eq.(2.38 and P is obtained ac- py Eq.(3.9), we expect to have+0.

cording to the discussion which leads to Eg.14). Taking '

a>(Do\)Y?, the b(t)? term in the above equation may be

neglected. We get

Considering nowx|#0, we may use dimensional analy-
sis once more to write for the first term in the right-hand side
of Eq. (3.14),

Po=a’r?—8a’z (3.11)

Ev% (' PoMy)~(x,— 36 z)& (3.18

The lower bound Dy\)Y? for a does not modify the 278 TF e T @ STt ’
asymptotic form ofZ(\). We may check it by considering
any regularized version of Eq2.40, assuming its measure whereC, is a dimensionless constant. Thus, |f5Tr<L, the
of integration is still dominated by the exponential factor asright-hand side of E¢(3.14) is still dominated by the second
a—0. A more physical view on the lower bound far, term, leading us again to E@3.17. It is important to ob-
which will become clear later, is that in order to evaluate theserve that in the analysis presented above, the derivative in
MSR functional Z(\), it is enough to take into account Eq.(3.18 is assumed to be a smooth function of the spatial
saddle-point configurations which have support in the timecoordinates, a condition that may not be valid in some spe-
interval At<(Do\) Y2 so that the power densit{8.10 cific set of points, as in a vortex sheet.
turns out to be dominated by the symmetric part of the strain Equation(3.17) is in fact a result similar to the one that
field. would be obtained from a loose application of Novikov's
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FIG. 1. The three axisymmetric surfaces of revolution, I, I, and
IIl, which bound the support of small scale velocity fluctuations

determined bys™. Asa— o, the surfaces asymptotically approach
the cone given by?= (x?+y?)/8.

theorem[17]. We expect stronger fluctuations of the velocity
field for positions wheréPy| <|P,|, that is[18],

|a®r? —8a°z%|<|c|Dy. (3.19
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_ij;

—i J: d3)2dtl;c<((<9tv§+v(ﬂo)ﬁﬁvj-i-v;(?ﬁv(o?))
X¢

|
t5..
x,x" e Q
|
+ E ;
n j »
X
According to the above discussion, we take nbj(i,t) and
vj()?,t) to be given by the former expressio3.5 and
(3.9), respectively. On the other hand, at smaller length
scales, given bj/ﬂ< Rg, Eg.(3.8) is not expected to repro-

duce the behavior of{Y(x,t) anymore, so that another pa-
rametrization is needed, viz.,

Sld?’)Zdtl;Z((?Ivz-I-v(BO)r?BvZ-l-er?ﬁv(ao))
€

dtd®xd®x" v (X,t)D ,5o(X—X)v 5 (X' ,1)

o dtdBxd3X 0 S (X, 1)D s(X— X )05 (X',1)
x ¢ Q “ B B

dtd®)d®" v, (X,1)D 4 5(X—X v 5 (X' ,1).

eQx ¢Q

(3.22

The above inequality is satisfied in a region of space (3.23
bounded by three disjoint surfaces generated by the revolu-

tion of hiperbolas, as shown in Fig. 1. It is consistent toThe linear expressions for Eg&.8) and (3.23 are associ-
assume the surfaces have a well-defined meaning only ated to the fact that we are considering velocity fluctuations

Vo (X, D) =a,(t)+ba(1)Xg.

length scales contained in the inertial range. Sirce
> (Do\)Y? we can see that for large enough valuea pfhe
surfaces enclose some regiGnsurrounding the origin, with
typical sizeRy~(|c|Dy/a%)¥?<R. The condition on\ is
given by

2
<R*

3.2
oDy (3.20

This relation defines, therefore, what is meant by the “large

\ asymptotic limit.”

To construct an effective picture out of these consider-

ations, we imagine that i) additional fluctuations of
vW(x,t) andvM(x,t) are superimposed to the previous ex-
pressiong3.5 and (3.8). Physical results are then obtained
in the Ry/R—0 limit. In practical terms, this amounts to
rewriting SV in a form which explicitly takes into account
the length scales involved hergg andR. With this aim in
mind, it is useful to employ the following notation:

(Xt if XeQ
“|o2(x,t) otherwise.

(3.21

Analogous definitions are provided forl})(x,t). We get,
from Egs.(3.21 and(3.2),

to depend essentially on wave numbers giverkiy ~* and
k~ Rgl. Equation (3.23 is not constrained by condition
(3.30, since it describes fluctuations at length scdigs
<R. The surface)() which enclose€) may be viewed as a
vortex sheet for the velocity fieldY(x,t). In Appendix B,
it is shown that() is necessarily a sphere of radik,
whereas b, 4(t) is an antisymmetric tensor and,(t)
=a,(t). As the coordinate-independent fielc,(t)

[=ga(t)] may be absorbed by pressure fluctuations in the
action (3.2), we may take

U;()Z,t) = wﬁ(t)eaﬂyxyi

(3.29
Vo (X0 =gt €ap Xy,

V\(herewﬁ(_t) f_;md op(t) are _proportiona_\l to the vorticity out-
side and inside€), respectively. At this point we note that
Egs.(2.32 and(3.24) give

fds‘)ZlA)(ao)(v(Bl)&ﬁvf)):ﬁ d*x0 P (vgdgvy) =0,
X
(3.25

proving the self-consistency of the simplification discussed
before Eq.(3.9).

From Eq.(3.24 we see thav{M(x,t) gives no stretch.
This peculiar result is related to the fact that velocity fluc-
tuations at length scales larger thHaiave to satisfy both the
constraintg3.33 and(3.39, which makes the flow described
by Eg. (3.9 somewhat unusual, when compared to the ones
commonly modeled in fluid dynamics, where condition



PRE 58 CIRCULATION STATISTICS IN THREE-DIMENSIONA. . .. 3195

(3.3¢ is not imposed. On a more physical ground, we may \we found expressions forv(X.t), v (X,t), and

say the constrainB.309 means that the symmetric part of the ~ <
strain field is “frozen” and does not fluctuate around the Y “(X ), but nothing was said aboulj(x ). As a matter of

saddle-point solution, which is a natural assumption, smcéaCt this field will be replaced, as shown below, by linear
we take it to represent the slow degrees of freedom. We alsgombination of its moments,,(t) = Jdxv (X, t)xg.

note that there is no contradiction between €gl17) and Eqg. Substituting Eqgs.(3.5 [= Ua(X=t)] and (3.29 in Eq.
(3.24, since a coordinate-independent field, as commente(s.22, we find, after a lengthy and straightforward compu-
before, is not written explicitly fov ; (x,t) andv, (xt). tation,

3
Z(\)~ f da f DLoc(tID[p()] ] Dlca(t)IDLbu(t)]
( a=1

DoM)

m?DoR* A2 % ) )
xexp{ Tz— +2|j_wdt{c3(t)[¢3(t)+2a¢3(t)]+cl(t)[¢l(t)_a¢1(t)]

. . © 4
T Ca(D[ $a(t) —achy(H)]+ 7RESC(Dp(1) +2ap(1) ]}~ Do J xd'{p[ci(t)+cg(t)+cg(t)]

R 6
+2772R2(E) 5c(t) } (3.26
|
where 0O(x,t) and b(t) have lifetimes of the order of a/and
1/(2a), respectively. We will have, therefore,
c, ()= f d3xo (X, t)x, for =12 * :
Coll)= g apy |, X050, 2 200~ [ da ool ola,)
(DA 12 a=1
2 4N 2 2
cat) = Fe2¢<sc(t)+E d3x[07 (X,1)Xp— 03 (X,1)X;] T R A f dt
VT 2)5eq" TR U2 R 212 a 4Do)-1a

(3.27

X| p5(t) +4a2p3(t) + pi(t) + a2 (1) + ¢3(t)

p(t) = w3(t) — ¢3(t).

A simplifying prescription has been used to get E826).
The exponential factor exaf) has been removed from the

expression fov}j(i,t) and the time integrals have been de-

fined for —oo<t<oo. The point in doing so is that we get

Gaussian integrals ovefic(t) andc,(t), which may be ex- an expression which involves a set of uncoupled one-
actly computed. The only consequence of this approximatiolimensional harmonic  oscillators  with  coordinates
is just a slight and unimportant deviation for the values of¢4, ¢, ¢3, andp. Observe thaw,(t) and w,(t) do not
coupling constants. Taking into account the boundary condiappear in Eq(3.28. This means that at length scales of the
tions p(*x»)=¢,(*£x)=0 in the resulting path integral, order ofRR, velocity fluctuations are essentially axisymmet-
the time variable is then restricted tol/a<t<0, where the ric. As smaller length scalg®f the order ofR;) are consid-
saddle-point method is assumed to wéitis follows natu- ered in the action, vorticity fluctuations in all directions of
rally from Egs. (2.32 and (2.39, which show that space become important. We may write E828 as

4
+a2¢%<t>+2(§) [b2<t>+4a2p2<t)]H, (3.28
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0 - problem here, through the analysis of subleading corrections
zm~f 1/zclaf dpdp [ do¢,de, for Z(\).
(DoM) a=1 Recalling what has been done, we observe that to derive
expression(3.3]) the path integral foZ(\) has been written
’772D0R4)\2 L? in a form which depends on an ordinary integral oseiThe
X ex;{ T o2 g {4l ¢1} &5p ) integrand is obtained from the saddle-point method, yielding

a consistent result only in the time intervall/a<t<0. In
L2 L2 this way, fluctuations of the velocity field were completely
{¢2|¢2} ) <{¢3|¢3} _) neglected fort<—1/a [for t=0 they do not contribute to
2Do Z(\) due to causality An improved form for Eq.(3.29
may be found, thus, through the substitution

2

L 4
ol ) 329

— 1
G({plp}:a,Za
G({Xa|x1}; T, 0,m) = P(x) G({Xo|X1}; T,0,m), (4.1)
where

whereP(x;) is the probability density to have=x; at time
G({Xa|X1}; T, 0,m) t;=—1/a. In other words, the effects of velocity fluctuations
for t<—1/a are simply encoded in the PDFs fprand ¢, .

1/2
= m“’ ) It is important to note that these random variables are related
2zsinh(wT) to the circulation at different length scales. We may write, in
fact,
X exp — L[(szrxz)cosr(wT)—Zx Xo]
2sin(@T)" 72" 71 1
(3.30 I'r=2w3(t) TR?=2[p(t) + p3(1)]7R?,

4.2
is the Euclidean propagat¢f9] for a particle of massn *-2
moving, in a time intervall, under the harmonic potential 1“<Ra>52¢a(t)7TR(2)_

1 mw?x?. The initial and final coordinates arg and X, 0
respectively. We obtain from Eq€3.29 and (3.30 the

asymptotic result
Above, T'y is the circulation evaluated for a circular loop of

s radiusR in thex-y plane, whiIng‘;) refers in an analogous
Z()\)me daiexp( _m DoR )‘_ Ni way to a loop of radiuf}y in a plane perpendicular to the
Y2 a2 2L2 a] \? unit vectorx,, . These loops are centered at the origin of the
(3.3)  coordinate system. From E@3.30 we see that agi—
only small fluctuations of¢, and w; become important.

These fluctuations are associated to the core of the circula-
tion PDF, which is modeled by a Gaussian distribution,

A simple way to understand the regularization of the di-
vergent expressiori2.40 for Z(\) is that the additional
terms in the path-integral summation, associated to fluctua-
tions, are complex quantities, which produce an increasing 2
number of canceling factors as— . P(T,) exp( ) ,

r
- 4.3
A(r)?
IV. SUBLEADING CORRECTIONS

The asymptotic resul{3.31) does not give us any dimen- where "r” gives the length scale. This form of the circula-
sional parameter which could characterize in a more detailetion PDF for smalll’, is a phenomenological ingredient in
way the circulation PDF, providing further motivation for a our analysis, well supported by numerical and real experi-
comparison with the experiment. We will investigate this ments[2,20]. Using Eqs(4.1)—(4.3) we rewrite Eq(3.29 as

- & 72D R4 \2
200~ | da dpap T dg,dg.exd -5 %
(Dgn) 12 a=1 2L

( 4n7?R* , 47R
1
a

— wi— 2
AR2 Y A(RO)2[¢1 ¢3])

L 4)
ﬁ) . (44

L2 L2 L2 (_ 1L
{¢1|¢1} ) ({¢’2|¢2} ) ({¢3|¢3} DO)G{P|P},51231D_O
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In order to compute Eq4.4), a very convenient simplifica-
tion of Eq. (3.30 follows from

wT/2__ wT/2
L

xt=x,e X,
1 2 (45)

oTl2__ wT/2
L

X" =x.e" Xo€

which allows us to write

) 1/2

mw
~ 2sinf(wT)

G({X5|X1}; T, 0,m)

Mw
27sinn wT)

-

It is also necessary to define; and ¢, in terms of
pT.p ., ¢., andd, . We have

1,01
(E(X )2+ E(X )2”. (4.6)
1 20 1 Y a2 4
w3=P+¢3=m[e (p"+d3z)—e “(p +¢3)],
1 L

b= 35z 1€ 43 € 243l 4.7
1 v

¢1,2=m[9¢1,2—e b1l

Substituting Eqs(4.6) and(4.7) into Eq. (4.4), the Gaussian
integrals may be readily evaluated, giving

ﬁz
!

B=[16sini(2)]°A " 1=7.6A"1.

1
Z(\)~ F( 1- (4.9

where
(4.9

In the computation of Eq4.8) we have assumed that

A(Ry)R?

AR >1, (4.10
which is clearly verified in practicg?].

We may interpret Eq(4.8) as the asymptotic approxima-
tion to the LorentziarZ(\)~(A\2+ B%)~1, which leads, in
its turn, to the stretched exponent®(I") ~exp(—G|I'|). The
tail decaying parameteg is inversely proportional, there-
fore, to the width of the PDF’s core,A22 This agrees with
Migdal's conjecture thaP(T") is a function of the scaling
variableI'/A®PK~ /% a5 discussed in the Introduction. We

would find Eq.(4.9 once again if we had considered other

axisymmetric contours, as two concentric loops of radRys

andR,, for instance. The PDF's dependence on the minimal

area has to be completely containedAin showing that uni-
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A physical picture that may explain in more concrete
terms the core-tail relationship for the circulation statistics,
the result of the above computations, is in order. We may
imagine that the large scale forces generate smooth configu-
rations with small vorticity which are then fragmented in the
cascade process up to the inertial range scales. These are the
“soft” vortices that contribute to the core of the circulation
PDF. With some probability, however, these vortices will be
found in regions of the fluid characterized by high stretching.
Their vorticity will be, thus, strongly enhanced, producing
the intermittent configurations, described by the PDF tails.
Since longitudinal velocity differences responsible for
stretching do not fluctuate so quickly as the transverse ones
related to circulation, the correlations of the soft vortices are
transposed to a different range of vorticity. This is the mean-
ing of B~A 1, which implies that the same anomalous ex-
ponents determine the tails and the core of the circulation
PDF.

It is clear, from the results just obtained, that our task,
within the reach of the saddle-point method, is at best to
establish predictions suitable to experimental test, even if we
lack a precise knowledge ak(R), to which further and
complementary investigations have to be directed. One
might suppose thaA(R) could be derived, at the onset of
turbulence, from the viscous limit of the Navier-Stokes equa-
tions, in such a way that the circulation PDF would keep the
form of its core, while developing slowly decaying tails. In
the viscous case, the circulation PDF is indeed Gaussian, but
A(R)~R? (see Appendix @ which is in strong disagree-
ment with observations. Thus we do not expect smooth con-
figurations of the velocity field to play any role in determin-
ing the core of the circulation PDF, even in situations close
to critical Reynolds numbers.

V. PARITY BREAKING EFFECTS

Let us study now possible asymmetries between the left
and right tails of the circulation PDF, caused by parity break-
ing external conditions. We will investigate here two simple
models(which will be denoted henceforth by A and B, re-
spectively: a fluid in rotation with constant angular velocity

w=wz and a fluid stirred by the forcd (x,t)="f ,(x,t)
+f,(x), where onlyf (x,t) is random, being defined by Eq.

(2.2). The static componerf_ta(ﬁ) is the one responsible for
parity breaking effects. In these models we will assume that
the core of the circulation PDF is given by a shifted Gaussian

distribution,
I'-T,)?
P(I‘)~ex% _(=To)”

A2 , (5.9

versal features of the circulation PDF are related essentially

to the form of its core. The manifestation of universality not ) ) o

only at the tails of PDFs seems to be in fact a property share¥ith I'o<A, andA being the same as in the situation where
by other turbulent systems, as discussed recently in the prolparity breaking conditions are removga=f,(x)=0]. To

lem of a passive scalar advected by a random velocity fielgimplify the notation, we took out the scale dependence of
in one dimensiorj21]. I', 'y, andA in Eq. (5.2).
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Model A by the external parameté&g. The first and third terms in the
right-hand side of Eq(5.6) are absorbed by the pressure in

A turbulent rotating fluid, with angular velocity = w2z, is . . o .
described by a slightly different version of the Navier-Stokesthe Navier-Stokes equations. Similarly to the analysis of

equations(2.1), which takes into account the presence omedeI A, we write the equation fas(t),

noninertial effects: .
b+ Zab: - 27TDO)\

R 2
E) eto(—t)+f,, (5.9

O oV gL o — 20 €34,V ,— wzxiz —9,P+vév +1,.
(5.2  the solution of which is
The centrifugal forcen?x’; may be absorbed by the pressure fo D\

term. Following all the steps carried in Sec. I, H8.36) b()=5,""2,
becomes now

2
E) g~ 2altl, (5.9

L

R\2 From this we obtain, instead of E(.39,
b+2ab—2aw= —ZWDO)\(E> e?g(—t), (5.3 2 4

§<°>=W2:f? {(n+i18)%+ B, (5.10

which is solved by
where thew/2 rotationA—i\ was taken into account, and

7D\ (R\? .
=w— —| e—2altl we have
b(t)=0——— (L e &, (5.9
o — fol?
while Eq. (2.23 still yields the same solution far ,(x,t), B= DR (5.11

given by Eq.(2.32 [this is also true for model B; the dis-

tinction between the models is due only to different solutionsThe result(5.10 may be quickly derived if we note that the

for b(t)]. Using Egs.(5.1) and(5.4), we obtain the corrected  only implication of Eq.(5.9) is the shiftl —T + wR?fy/a in
form of Eq. (4.4), which gives, after computations are done,the MSR action, leading té(O)_;S(O)H)\mzfo/a_

2\ g2 Using now Eqgs(5.1) and(5.10 to correct Eq.(4.4), we
1—exp( _92 0) P l (5.5  9et, through a direct computation,

Z(>\)~exlo(—im)i

)\2 AZ )\2 '
rg B
We find immediately from Eq(5.5 the shift'—=I'+w in Z(N)~ — I TN
the circulation PDF, as expected on physical grounds. An- (A+IB)"+B ATTT(NHIB)™+ B7]

other consequence of E(.5) is that the tail decaying pa- (5.12

rameterg gets multiplied by a factor which is related to the From the above expression f@&(\) we find that the right

shift I'y at the core of the circulation PDF. A increases, and left tails of the circulation PDF are described by
the PDF tails become broader, apart from the overall shift byo (1) ~exp(-g,|[|) and P_(I')~exp(pB_|[]), respec-

. tively, with
Model B — r3 ]
- Bo=p+|exp —2| B2+
Expanding the static part of,(x,t) in a power series A (5.13
aroundx=0, we will have, up to first order, 2 1/2 '
— L — __ 5 0 2, o2
Fo(X)=T(0)+ 0 5 X+ g sf oy X (5.6 B-==B* EXP( 20|BtR

where It is interesting to note that the product of the tail decaying

parameters is approximately constant:

1

-:0' I‘Z
X 5.7 ﬁ+,8_:exp< —2A—2) B?=p2. (5.19
1
I gfar =5 (9 o+ 3,5 5)
e 2( b “ <=0 There is a compensation effect between the left and right

o ) ) ) tails, as the parity breaking paramefgris varied.
The above expansion is physically associated to parity break-

ing mechanisms deﬂned'ln the mtegrg[ scgles. As a conjec- V. CONCLUSION

ture, we expect that the induced modification on the instan-

ton solutions will lead to a model-independent description of The problem of circulation statistics in fully developed

parity breaking effects at the PDF tails. turbulence was investigated through the Martin-Siggia-Rose
Let us consider here the case whekgf,;=e€3,5f0, to  formalism. An infinite set of axisymmetric instanton solu-

get equations which are still invariant under rotations aroundions follows from the saddle-point equations, which are la-

thez axis. The strength of parity symmetry breaking is givenbeled the component,, of the strain field, a partially an-
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nealed variable. In physical terms, this means that the nonA/e observe thal  symmetry holds in the MSR formalism
diagonal components of the strain tensor, related tavhenever functionals of the velocity field are defined at a
circulation, are in fact the random variables which fluctuatefixed instant of time, being also invariant under usual Gal-
against the quasi-static background defined dgy. The jlean tranformation§u(t)= consi.

asymptotic behavior aZ(\) =(exp(Al)), as well as its sub- Suppose we have a solution of the saddle-point equations

leading correction, were found, leading to a stretched eXPyith o (>Z=Ot)= #.(t). A time-dependent translation may

nential description of the tails of the circulation PDF, a result lied to find h luti - ith v’ (X=0
in agreement with observational data. The core and the taifd€ applied to find another so utiarf,(x,t) with v,(x=01)

of the circulation PDF were seen to be intrinsically related.~ 0 Which yields the same saddle-point action. Our task is
We estimate the tail decaying paramef@rto be approxi- just to determinei(t) from
mately equal to 7681, with 2A being the width of the .
PDF'’s core. The numerical value in this estimate is related to va( f dtu(t),t
the transition at timet~—1/a between the saddle-point 0
dominated regime and the free turbulent description of the .
fluid in the MSR formalism, which corresponds to have A simple iterative procedure may be devised to firft) . To
=0 in Eq.(2.6). More generically, if the transition occurs at start, we note that EqA2) gives
time t~—g/a, whereg may be regarded as an adjustable
phenomenological parameter, then we will haye Ua(0) = 44(0).
~4sinh(Z)"?A"". The relationship betweef and A im- Taking now the time derivative of EGA2), we get
plies that universal features of the circulation statistics are
determined essentially by the PDF’s core, which, however,
cannot be approached by means of the instanton technique. Lla(t)—uﬂ(t)&ﬁva

Parity breaking effects were also studied, as the ones
which occur in rotating systems or in fluids stirred by parity
breaking external forces. Well-defined predictions were de- _ Jtdt* 0t
rived, which we believe are within the reach of present nu- t,Va 0 u(t).ty
merical techniques, like the method of direct numerical
simulations.

On the theoretical side, the important problem to be adat t=0, we have, therefore,
dressed in future investigations is just the study of the core of
the circulation PDF. It is likely that some explicit character- . -
ization of vorticity filaments will be necessary in order to Ua(0) =Ug(0) 90 o(X,0)|3=0~ I o(01)|1=0=0, (A5)
study matters such as anomalous exponents associated to {Hét is
termittency and the minimal area conjecture. '

=u,(t). (A2)

(A3)

X+ fotdtﬁ(t),t)

x=0

=0. (Ad)
tl=t
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APPENDIX A: expansion ofu,(t) aroundt=0.
TIME-DEPENDENT TRANSLATIONS

The MSR actionS(\), Eg. (2.6), _is invariant under the DESCRlPTIO,\?FC))F,):ET’\IHDéXVg'RTEX SHEET

group T of time-dependent translations between coordinate

systems, defined through We are taking fluctuations aflY)(x,t) to have a discon-
¢ tinuity at the surface)(}, which enclose$}, a volume with

>Z—>>Z’:>Z—f dtu(t), typical sizeR,. Note, in first place, that we may write
0
. v V(D=0 (X[ 1-F(X,t)]+v (X,1)F(X,t),
V(X D)=L (X, ) =0, | X+ fodtﬁ(t),t>—ua(t), (B1)

where v (x,t) and v (x,t) are given by Eqs(3.8) and

T R S -
0 oK) =0 (X)) =04 x+f dtu(t),t), (A1) (323, respectively, and
0

1 if xeQ

Q(X,H)—Q'(X,t)=Q >Z+£dtﬁ(t),t), F(X)=10 otherwise. (B2)

The idea now is to investigate the consequences of the in-
compressibility constraintg,v{"(x,t)=0. This and Eq.

U, ()X, .
Ual e (B1) imply that

- - - t -
P(x,t)—=P'(x,t)=P x+f dtu(t),t
0




3200

9,05 (X,1) =0 (X,1)=0,

(B3)
(s (X,t)—v.(X1)n,=0.

Above,n,=n-X,, wheren is the unit normal vector point-

ing outwards the surface/Q). Writing nazRaﬁx[,/lﬂ,
where R,z is a rotation matrix, we get, from Eq$3.8),
(3.23 and(B3),

XVR),O}{[aa(t)_aa(t)]+[baﬁ(t)_Eaaﬁwa(t)]xﬁ}zo.
(B4)
This gives a,(t)=a,(t) and R a[Dap(t) = €aopwo(t)]

=Mz, whereM = M()Z) is an antisymmetric matrix. Since
there is in any closed surfack) at least one point where
R.s= 045, We find thatb ,4(t) is also an antisymmetric ma-
trix. ThereforeR 4 is constant or{) up to rotations around
X, yieldingn=x/|x]. To put it in another way{) is a sphere

of radiusR,. A convenient expression fdr,s(t) is

baﬁ(t):¢y(t)6ayﬁv (BS)

allowing us to define Eq(3.24).

APPENDIX C:
CIRCULATION PDF IN THE VISCOUS LIMIT

To study the viscous limit, we just neglect the convection

L. MORICONI AND F. I. TAKAKURA

PRE 58
Fa(i,t)=—>\f d3x' D ,5(|x—X'|)
Xy
Xe3yﬁr—,5(ri—R)5(Z')5(t)
1
DoA27R? x?
2T53ﬁaxﬁex - F . (CH
In Fourier space, EqC4) becomes
(024 1%k 0 (K, w)=F 4(K). (C6)

We obtain, thus,

R 1 e Fo(k) .
va(x,t)zwf d°kdw Tvzkllexp(lk-xﬂwt)

1 _F (k) -
_ 3 2
—47wf d3k 2 explik-x—vk?|t]).

(€7
Since we are interested to knaw,(x, ,0), it follows, from

Eq. (C7), that
1 LF,
[ aecEl®
4y k?2

Taking now Eq.(C5), we get

va(X,,0)= exp(ik, -x,). (C9®

~ .

AR2
EL(R)= 20

2mL2

%2
iKk- X—F

d3xes gaX Bexp(

term in the Navier-Stokes equations. As a result, we get an

instructive example where the circulation PDF may be ex-

actly found. The saddle-point equatiof&9) and (2.10 are
now replaced by

i(atva—vaZz;a):Jd3>ZDaB(|>Z—>Z'|)8B(>Z',t), (C1)

(00 o+ V0?0 ) = )\Egﬁa 5(ri R)8(z)8(t). (C2)

The incompressibility constraintﬁauazaaﬁa=0 have also
to be satisfied. Using Eq$C1) and (C2), the saddle-point
action in the MSR functional may be written as

N[- -
5(x)=—§§u-dx. (3

All we need to do, therefore, is to finﬁia(i ,2z=0t=0)
=v(x,,0). Applying (3,+ v4?) on Eq.(C1), we will have,
integrating by parts and using E(2),

[62— v2(5%) %] 4(X,1) = — F o(X,1), (C4

where

. Do)\’ﬂl/sz LZ_)Z
_|E3BakﬁTeX Tk (C9

Substituting this result in EqC8), we will have

mDAR?

Ua(X,00= 6y (C10

63ﬁaxﬁ .

Thus, from Egs(C3) and (C10), the saddle-point action is
computed as

\?Dym?R*

S(V=- 6v

(C1)
Performing now the analytical mapping—i\, we find

Z()\)ocexp<—

which leads to a Gaussian statistics, described by the circu-
lation PDF

A2Dom?R*

6y , (C12

1 I?
P(I')= Aex —xz) (C13
where
2D0 1/2
A= (g) ’7TR2. (C14)
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