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Circulation statistics in three-dimensional turbulent flows

L. Moriconi1 and F. I. Takakura2
1Instituto de Fı´sica, Universidade Federal do Rio de Janeiro, C.P. 68528, Rio de Janeiro, RJ, 21945-970, Brazil

2Departamento de Fı´sica, ICE, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
~Received 20 February 1998; revised manuscript received 23 April 1998!

We study the largel limit of the loop-dependent characteristic functionalZ(l)5^exp(ilrcvW•dxW)&, related to
the probability density function~PDF! of the circulation around a closed contourc. The analysis is carried out
in the framework of the Martin-Siggia-Rose field theory formulation of the turbulence problem, by means of
the saddle-point technique. Axisymmetric instantons, labeled by the componentszz of the strain field—a
partially annealed variable in our formalism—are obtained for a circular loop in thex-y plane, with radius
defined in the inertial range. Fluctuations of the velocity field around the saddle-point solutions are relevant,
leading to the Lorentzian asymptotic behaviorZ(l);1/l2. TheO(1/l4) subleading correction and the asym-
metry between right and left PDF tails due to parity breaking mechanisms are also investigated.
@S1063-651X~98!08609-7#

PACS number~s!: 47.27.Gs, 11.15.Kc
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I. INTRODUCTION

The study of the statistical properties of circulation
fully developed turbulence has been attracting a great de
attention during the last few years@1–3#. The main motiva-
tion relies on the emergent picture of turbulence as a p
nomenon intrinsically related to the dynamics of vortic
filaments, clearly observed for the first time in direct nume
cal simulations of the Navier-Stokes equations@4#. Filamen-
tary structures seem to have, in fact, a fundamental plac
the hierarchy of eddy fluctuations, as advanced in a rec
phenomenological work of She and Le´vêque@5#, where mul-
tifractal exponents of velocity structure functions were p
dicted to very accurate precision.

An earlier theoretical analysis of the problem of circu
tion statistics was attempted by Migdal@1#, who proposed,
using functional methods originally devised for the inves
gation of gauge theories, that in the inertial range the pr
ability density function~PDF! of the circulationG, P(G),
evaluated for a closed contourc, should depend uniquely o
the scaling variableG/A(2k21)/2k, where A is the minimal
area enclosed byc and k is an unknown parameter. It wa
initially thought, in order to computek, that the central limit
theorem could be evoked to regardG as a random Gaussia
variable obtained from the contributions of many indepe
dent vortices. Using, then, the definition of circulation,

G5 R
c
vW •dxW , ~1.1!

and the Kolmogorov scaling law,̂ uvW (xW )2vW (yW )u&;uxW

2yW u1/3, a simple guess would bek53/2, leading to^Gn&
;A2n/3. We now know, however, from a numerical analys
by Caoet al. @2#, that although there is some support to t
minimal area conjecture and the general existence of a s
ing variable, as defined above, the Gaussian descriptio
the circulation statistics in the inertial range and the ‘‘Ko
mogorov’’ exponentk53/2 are both ruled out~the numerical
results indicatek,3/2). Gaussianity holds only in the inte
PRE 581063-651X/98/58~3!/3187~15!/$15.00
of

e-

-

in
nt

-

-
-

-

al-
of

gral scales, while it turns out that for loops contained in t
inertial range the correlation between vortices cannot be
glected, a fact that obstructs an application of the law
large numbers. Intermittency, as found in Ref.@2#, is sig-
naled at the tails of the circulation PDFs, which are fitted
stretched exponentials likeP(G);exp(2buGua), where a
.1 in the inertial range anda.2 in the integral scales. On
the other hand, the circulation PDF cores are Gaussian
one could expect.

An important conceptual point, raised in the same num
cal simulation and related to the determination ofk, is
whether the moments ofG are independent or not from th
form of velocity correlation functions. In order to find^G2&,
for instance, it may be useless to know the two-point cor

lation function^va(xW ,t)vb(xW8,t)&, since the contour integra
tions which appear in the definition of the square of the c
culation and the average over realizations of the rand
velocity field may not commute.

Our aim in the present work is to study the problem
circulation statistics in the inertial range through the Mart
Siggia-Rose~MSR! technique@6#. In spite of the many years
passed since its advent, only recently interesting results w
obtained from the MSR formalism, concerning the compu
tion of intermittency effects in problems like turbulence
the Burgers model and in the transport of a passive sc
@7,8#. The basic tool employed in these works is the sadd
point method, where instanton configurations and fluct
tions around them are assumed to contribute in a signific
way to the evaluation of the MSR functional. As we will se
a computation carried along these lines will give us no
Gaussian tails for the circulation PDF, with stretching exp
nenta51, in reasonable agreement with the numerical fin
ings commented above.

This paper is organized as follows. In Sec. II the ba
elements of our formalism are set. We define the MSR pa
integral expression from which the circulation PDF may
derived, and work out its instanton solutions. The sadd
point action is then computed. In Sec. III we move to t
next natural step, which is the study of fluctuations arou
3187 © 1998 The American Physical Society
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the saddle-point solutions. We find that fluctuations contr
ute in an essential way to the asymptotic form of the M
functional. In Sec. IV we investigate subleading correctio
to the asymptotic expression, induced by small~and Gauss-
ian! fluctuations of the circulation. As a result, we establis
for the PDF of the circulation, a relation between the wid
of its Gaussian core and the tail decaying parameterb. In
Sec. V we study the structure of asymmetric PDFs, due
parity breaking mechanisms, like turbulence in rotating s
tems or under the action of parity breaking external forc
We comment on our results in Sec. VI pointing out dire
tions of future research. In the Appendixes, we discuss
more detail computations which underlie some of the res
presented in the bulk of the paper.

II. INSTANTONS IN THE MSR APPROACH

As is largely known, inertial range properties of thre
dimensional turbulence may be modeled by the stocha
Navier-Stokes equations@9#,

] tva1vb]bva52]aP1n]2va1 f a ,
~2.1!

]ava50,

where thea51,2,3 and the Gaussian random forcef a(xW ,t)
is defined by

^ f a~xW ,t !&50,

^ f a~xW ,t ! f b~xW8,t8!&[Dab~xW2xW8!d~ t2t8!

5D0expS 2
uxW2xW8u2

L2 D dabd~ t2t8!.

~2.2!

Above, L is the typical correlation length of the energ
pumping mechanisms, acting at large scales. The other
portant length in the problem, according to Kolmogor
theory@10#, is h;n3/4→0, the microscopic scale where vis
cosity effects come into play.

From the stochastic Navier-Stokes equations one may
to obtain, in principle, any velocity correlation function. W
are particularly interested to study the characteristic fu
tional

Z~l!5^exp~ ilG!&, ~2.3!

whereG is the circulation evaluated at timet50, as given
by Eq. ~1.1!. The contourc used in the definition ofG is
taken here to be the circumferencex21y25R2, with z50,
oriented in the counterclockwise direction. A basic conditi
in our analysis is thatR is a length contained in the inertia
range, that is,h!R!L. The PDF for the circulation may b
written from the loop functional as

P~G!5
1

2pE2`

`

dlexp~2 ilG!Z~l!. ~2.4!

It is appropriate, for the computations which will follow, t
consider the analytical mappingl→2 il in the right-hand
-
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side of Eq.~2.3!. At a later stage we will get back to th
original definition ofl. The MSR formalism@6# allows us to
write the path-integral expression

Z~l!5E D v̂DvDPDQexp~2S!, ~2.5!

where

S52 i E d3xWdt@ v̂a~] tva1vb]bva2n]2va1]aP!

1Q]ava#1
1

2E dtd3xWd3xW8v̂a~xW ,t !

3Dab~xW2xW8!v̂b~xW8,t !2lG. ~2.6!

The MSR technique may be used to derive, in an alter
tive way, the Wyld diagrammatic expansion@11# for the
computation of correlation functions of the velocity fiel
obtained directly from the stochastic equations~2.1!. This
expansion is constructed by taking the nonlinear term in
Navier-Stokes equations, related to convection, as a pe
bation. For this reason, the perturbative MSR-Wyld appro
has been criticized along the years, as an inappropriate
to deal with the singular configurations of the velocity fiel
which are fundamental in turbulence. However, the adv
tage of the MSR formalism is that nonperturbative issu
may be addressed in principle, if one knows how to fi
specific configurations of the flow that could represent r
evant contributions to the functional integration forZ(l).
This is precisely the task for which the saddle-point meth
is devised.

The role of theP andQ fields in the above path-integra
summation is just to assure that]ava5]av̂a50. These in-
compressibility conditions are in fact two of the four sadd
point equations obtained from the actionS, viz.,

dS

dQ
5]ava50, ~2.7!

dS

dP
5]av̂a50. ~2.8!

The other two saddle-point equations are given by

dS

dva
5 i ~] tv̂a2 v̂b]avb1vb]bv̂a1n]2v̂a1]aQ!

2l
dG

dva
50, ~2.9!

dS

d v̂a

5 i ~] tva1vb]bva2n]2va1]aP!

2E d3xW8Dab~ uxW2xW8u!v̂b~xW8,t !50. ~2.10!

We have
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dG

dva
5

d

dva
R

c
vb~xW8,0!dxb8

5e3ba

xb

r'

d~r'2R!d~z!d~ t !, ~2.11!

where r'5(x21y2)1/2. The importance of the saddle-poin
equations is that they provide a systematic way to study
large l limit of Z(l). However, the saddle-point actio
computed in this way necessarily depends onl in a way
incompatible with observational results@2#. In order to un-
derstand it, we observe that the saddle-point equations
invariant under the scaling transformationsn→h1/2n, t

→h21/2t, va→h1/2va , v̂a→hv̂a ,P→hP, Q→h3/2Q, and
l→hl. These relations imply that the saddle-point acti
has the general formS(0)5l3/2f (l21/2n). Since we expect
to have finite answers in the limit of vanishing viscosity,
follows thatS(0);l3/2. This dependence onl is exactly the
one found in Burgers turbulence for the statistics of veloc
differences@7,12#, which we know not to reproduce, eve
qualitatively, the PDFs of the circulation in three dime
sions. A similar difficulty was in fact noticed in the invest
gation of velocity structure functions in incompressible tu
bulence by means of the saddle-point method@8#. In order to
find physically meaningful PDF tails of the circulation,
solution of this problem will be pursued here, based on
definition of an additional field in the MSR path integra
parametrizing an infinite family of saddle-point configur
tions.

We would be tempted to study the above saddle-po
equations by first eliminating theP andQ fields in Eqs.~2.9!
and~2.10! with the help of Eqs.~2.7! and~2.8!. All nonlinear
terms in Eqs.~2.9! and ~2.10! would consequently appea
projected on transverse modes through the use of the te
Pab5]22(]a]b2dab). However, this is not an adequa
procedure to follow, in view of the simplifications inhere
in the implementation of the saddle-point method to
MSR formalism. The central point is that we will be dealin
with linear approximations for the velocity field, as a cons
quence of the small radiusR of the contourc, in comparison
with the large scale lengthL. We have, thus,

va~xW ,t !5sab~ t !xb , ~2.12!

with (asaa50 ~due to]ava50). Coordinate-independen
terms are not written above, since we may impose, fr
invariance under the group of time-dependent translatio
the saddle-point solution to satisfyva(xW50,t)50 ~see Ap-
pendix A!. Using Eq.~2.12! we observe that expressions lik
Pabvg]gvb , related to the global nature of the flow, wou
not be precisely defined. A simple way out of this proble
usual in applied mathematical studies of the Navier-Sto
equations@13#, is to write the pressure as a quadratic form

P5Aabxaxb , ~2.13!

so that ]aP exactly cancels in Eq.~2.10! any symmetric
tensor acting on the spatial coordinates, which would app
in the linear approximation. Therefore Eq.~2.10! may be
written as an equation for the time evolution of the antisy
metric part of the strain field,
e
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dt
sab

s̄ 1~sss s̄1s s̄ss!ab

2 i E d3xW] [b,Da]g~ uxuW !v̂g~xW ,t !50, ~2.14!

where we have defined

sab
s 5

1

2
~sab1sba!, ~2.15!

sab
s̄ 5

1

2
~sab2sba!, ~2.16!

] [b,Da]g~ uxuW !5
1

2
@]bDag~ uxuW !2]aDbg~ uxuW !#. ~2.17!

An important remark is that Eq.~2.12! is not assumed to
represent a direct modeling of the velocity field in sustain
turbulence, which we know to be associated with many d
ferent length scales and singular structures. The idea of
instanton method, as advanced by Falkovichet al. @8#, is in
fact to consider, in the MSR framework, smooth configu
tions and perturbations around them that may condense s
information on the statistics of the strong~intermittent! fluc-
tuations of the velocity field. The situation here is analogo
to the well-known instanton approach to the double well p
tential in quantum mechanics@14#, where instantons are ob
tained as saddle-point solutions, yielding extremes of the
clidean action. It is clear in that case that the smooth ki
antikink form of the instanton configurations cannot be tak
as a direct representation of the quantum-mechanical dyn
ics, which has a picture as a sum over particle paths w
complex weights exp(iS). In the turbulence context, instea
of transforming time into an imaginary variable as is done
quantum mechanics, we look for saddle-point solutions, c
sidering, in the MSR action, the analytical mappingl→
2 il. A deeper analogy, which should also be noted, is p
vided by the phenomenon of localization in condensed m
ter physics. There is, in this case, a functional integral f
malism, where smooth instantons may be found, giv
expressions for the tails of the density of electron states@15#.
The similarity with the turbulence problem is a strong on
while in the condensed matter system localized wave fu
tions define some multifractal set, the same phenome
takes place in turbulence, regarding the fluctuations of
velocity field. Also, the limitations of the instanton metho
are exactly the same in both problems. Either in localizat
or in turbulence the core of the density of states or of
PDFs, respectively, cannot be obtained from the saddle-p
technique. To understand it in our analysis of the statistics
circulation, we note that for large values ofl the functional
Z(l) gets its more relevant contributions from the tails of t
circulation PDF. At the core, where the PDF is essentia
stationary, fluctuations of exp(ilG) will tend to produce de-
structive interference.

Our problem has been reduced so far to an analysis
Eqs.~2.8!, ~2.9!, and~2.14!, where in the second equation th
velocity field is given by Eq.~2.12!. Since these equation
are invariant under rotations around thez axis, it is interest-
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ing to look for axisymmetric solutions. In the linear approx
mation, the most general form of an axisymmetric strain fi
is given by

s~ t !5F a~ t ! b~ t ! 0

2b~ t ! a~ t ! 0

0 0 22a~ t !
G . ~2.18!

The above form ofs(t) has a simple hydrodynamical inte
pretation. Takinga.0, for instance, streamlines are just e
panding spirals which approach in an exponential way thexy
plane from both regionsz.0 andz,0. It is important to
note thatszz(t)522a(t), which has the dimensions of th
inverse of time, plays the role of an arbitrary external fun
tion in Eq. ~2.14!. In other words, vorticity is controlled by
stretch, associated toa(t). We should try to find instanton
~the solutions of the saddle-point equations! for any well-
behaved functiona(t) @with a(t)→0 as utu→`] and then
sum up their contributions in the path-integral expression
Z(l). This suggests an alternative strategy of computat
where a(t), or some variable related to it, would appe
from the very start in the MSR formalism as a field labeli
families of velocity configurations. There are, in fact, ma
different ways to implement this idea, distinguished ess
tially by computational convenience. Our choice consists
writing Eq. ~2.5!, up to a normalization factor, as

Z~l!5E D v̂DvDPDQDss

3d@]avbuz501]bvauz5022sab
s #exp~2S!

5E DssE D v̂DvDPDQDQ̃exp~2S̃!, ~2.19!

wheresab
s 5sab

s (x,y,t) andQ̃ab5Q̃ab(x,y,t) are symmet-
ric matrices and

S̃5S2
i

2E dxdydtQ̃ab~x,y,t !

3@]avbuz501]bvauz5022sab
s ~x,y,t !#. ~2.20!

The meaning of Eq.~2.19! is that we sum up the contribu
tions to the path-integral expression in two steps: first
considering velocity configurations which satisfy]avbuz50

1]bvauz5052sab
s (x,y,t), for a given fieldsab

s . The sum-
mation over the fieldssab

s is performed afterwards. The lin
ear approximation for the velocity field corresponds, thus
fieldssab

s with slow dependence on thex andy coordinates,
within the length scale of the order ofR, while axial sym-
metry, a condition related to large values ofl, is imposed
here as a restriction on the configurations forsab

s (t). More
precisely, we will consider the sum in Eq.~2.19! as carried
over the space of axisymmetric fieldssab

s (t)5(dab

23da3db3)a(t), in accordance with Eq.~2.18!. This corre-
sponds to replacing*Dss(t) by *Da(t) in Eq. ~2.19!. How-
ever, this constraint has to be applied with care, since
meaning is linked to configurations of the velocity field d
fined at length scales larger than the loop’s radiusR. To state
it in a different way, the velocity field that enters in th
d

-

r
n,

-
n

y

o

ts

aboved functional is in fact a ‘‘smeared’’ field, given by the
contributions of wave numbersk,R21.

The saddle-point method is to be used in the first step
computation~where sab

s is fixed! involving the actionS̃
rather thanS. The only modification of the previous saddle
point equations~2.7!–~2.10!, as may be readily seen fromS̃,
is on Eq.~2.9!, which must be replaced now by

dS̃

dva
5 i $] tv̂a2 v̂b]avb1vb]bv̂a1n]2v̂a

1]aQ1]b @d~z!Q̃ba#%2l
dG

dva
50. ~2.21!

We also have an additional equation, associated to variat
of the fieldQ̃ab ,

dS̃

dQ̃ab

52 i @]avbuz501]bvauz5022sab
s ~ t !#50.

~2.22!

This equation, however, is beforehand solved by Eqs.~2.12!
and ~2.18!. Using Eqs.~2.11!, ~2.12! and taking the limit of
vanishing viscosity, we may write Eq.~2.21! as

] tv̂a2sbav̂b1sbgxg]bv̂a1]aQ1]b@d~z!Q̃ba#

5 ile3ab

xb

r'

d~r'2R!d~z!d~ t !. ~2.23!

We have, therefore, a closed system of coupled equati
given by Eqs.~2.8!, ~2.14!, and~2.23!. It is important to state
the boundary conditions that the solutions of these equat
have to satisfy. Since the viscosity term appears in Eq.~2.21!
with the opposite sign, compared to the one in the Nav
Stokes equations, we impose, in order to avoid an unboun
growing of the field v̂a(xW ,t), that v̂a(xW ,t.0)50. In this
way, Eq.~2.23! leads us to

v̂a~xW ,02!5 ile3ba

xb

r'

d~r'2R!d~z!. ~2.24!

Also, we require thatv̂a(xW ,t)→0 as t→2`. The equation
for v̂a(xW ,t) may be solved through the ansatz

v̂a~xW ,t !5e3baxbd~z! (
n50

`

cn~ t !r'
n21d~n!~r'2R!,

~2.25!

where d (n)(r'2R)5dnd(r'2R)/dr'
n . The boundary con-

dition ~2.24! reads now

c0~02!5 il,

cn~02!50 for n.0. ~2.26!

We find, substituting Eq.~2.25! in Eq. ~2.23!,
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d

dt
c01ac050,

d

dt
cn1a~n11!cn1acn2150 for n.0 ~2.27!

andQ̃ab5(dab2da3db3)Q̃, with ~below,a51,2)

]aQ̃522b~ t !xa (
n50

`

cn~ t !r'
n21d~n!~r'2R!, ~2.28!

Q50. ~2.29!

The infinite set of Eqs.~2.27! as well as Eq.~2.28! are
solved, respectively, by

cn~ t !5
il

n!
e2*0

t dt8a~ t8!~e2*0
t dt8a~ t8!21!n, ~2.30!

Q̃~r' ,t !522b~ t ! (
n50

`

cn~ t !E
0

r'

djj nd~n!~j2R!

522ilb~ t !u~r'2Re*0
t dt8a~ t8!!, ~2.31!

whereu(x)[(11uxu/x)/2 is the step function. Taking Eq
~2.30!, the infinite summation in Eq.~2.25! may be exactly
performed. We find the compact result fort,0,

v̂a~xW ,t !5 ile3ba

xb

r'

d~r'2Re*0
t dt8a~ t8!!d~z!. ~2.32!

In order to get some intuition on the singularity in the abo
expression, we just recall that the quadratic term forv̂a(xW ,t)
in the MSR action is obtained from

K expS i E d3xWdtv̂a~xW ,t ! f a~xW ,t ! D L
f

, ~2.33!

where the brackets denote an average over realizations o
stochastic force fieldf a(xW ,t). Substituting in this average

v̂a(xW ,t) by the saddle-point solution~2.32!, we find

E d3xWdtv̂a~xW ,t ! f a~xW ,t !;E dt R dxa f a~xW ,t !,

~2.34!

where the loop integral is taken around the circumference
radiusr'5Rexp@*0

t dt8a(t8)#. We see that Eq.~2.34! is in fact
nonvanishing for configurations of the force field that m
produce some circulation around the loopr'5R, at t50,
through convective processes in the fluid.

Let us consider now Eq.~2.14! for the velocity field,
which, using the strain field~2.18!, may be written as

ḃ12ab1 i E d3xW] [1,D2]g~ uxuW !v̂g~xW ,t !50. ~2.35!

Substituting the solution forv̂g(xW ,t), in the above expres
sion, we obtain
the

of

ḃ12ab522pD0lS R

L D 2

e2*0
t dt8a~ t8!u~2t !. ~2.36!

In order to have well-behaved solutions fort→2`, we see,
from Eq. ~2.36!, that it is necessary to have in this lim
*0

t dt8a(t8)→2`. Motivated by the general idea of a grad
ent expansion, we will restrict our study, as a first appro
mation, to the effects of time-independent configuratio
given by a(t)5a.0. Correspondingly, in the definition o
Z(l), Eq. ~2.19!, we will have

E Dss→E
0

`

da. ~2.37!

A possible physical interpretation of the above replacem
is related to the experimental observation of circulation a
more intermittent random variable than longitudinal veloc
differences@2#. Thus, in the decomposition of the strain te
sor ~2.18! into symmetric and antisymmetric parts, the latt
is actually the quantity which fluctuates more strongly in t
‘‘background’’ defined by the partially annealed fielda(t). It
is worth observing this kind of interpretation is usual in
large variety of systems characterized by different tim
scales, like spin glasses, for instance, in the situation wh
the dynamics of spin couplings is slow—but not negligible
when compared to the typical time for spins to reach therm
equilibrium @16#.

Equation~2.36! may be easily solved, yielding

b~ t !52
pD0l

2a S R

L D 2

e22autu . ~2.38!

As could be anticipated, we see that Eq.~2.38! represents the
well-known phenomenon of vorticity amplification by vorte
stretching, controlled by the parametera. Although viscosity
does not enter in this expression, vortex stretching
bounded, which would not occur in an inviscid flow. Th
explanation for this behavior of the instanton solution fo
lows from the fact that viscosity has been taken into acco
in an implicit way, through Eq.~2.24!, which definesv̂a(xW ,t)
at the initial time t50, so that the saddle-point solution
vanish ast→6`. The peculiar property of Eq.~2.38! that
will be important in our subsequent considerations is just
factor l/a, relatingl and the vortex stretching parametera
to the amplitude ofb(t).

The saddle-point solutions we have found forva(xW ,t) and

v̂a(xW ,t) may be substituted now in the actionS̃ to give

S̃~0!52
p2D0R4

2L2

l2

a
. ~2.39!

We note that a straight application of this result would le
to

Z~l!;E
0

`

daexpS 2
p2D0R4

2L2

l2

a D , ~2.40!

which is divergent as the integration region extends toa
→` ~above,l has been substituted byil). This ‘‘ultravio-
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let’’ divergence is in fact naturally regularized when we al
take into account fluctuations around the saddle-point s
tions, as shown next.

III. ANALYSIS OF FLUCTUATIONS

Denoting the saddle-point fields and fluctuations arou
them by the indexes‘‘(0)’ ’ and ‘‘(1)’ ’, respectively, we
write

va~xW ,t !5va
~0!~xW ,t !1va

~1!~xW ,t !,

v̂a~xW ,t !5 v̂a
~0!~xW ,t !1 v̂a

~1!~xW ,t !,

P~xW ,t !5P~0!~xW ,t !1P~1!~xW ,t !, ~3.1!

Q~xW ,t !5Q~0!~xW ,t !1Q~1!~xW ,t !,

Q̃ab~x,y,t !5Q̃ab
~0!~x,y,t !1Q̃ab

~1!~x,y,t !.

The action is expressed asS̃5S̃(0)1S̃(1), whereS̃(0) is given
by Eq. ~2.39!, and we have, up to second order in the p
turbations,

S̃~1!52 i E d3xWdt@ v̂a
~1!~] tva

~1!1vb
~0!]bva

~1!1vb
~1!]bva

~0!

2n]2va
~1!1]aP~1!!1 v̂a

~0!~vb
~1!]bva

~1!!1Q~1!]ava
~1!#

2
i

2E dxdydtQ̃ab
~1!~]avb

~1!1]bva
~1!!uz50

1
1

2E dtd3xWd3xW8v̂a
~1!~xW ,t !Dab~xW2xW8!v̂b

~1!~xW8,t !.

~3.2!

We included in~3.2!, for the sake of completeness, the v
cosity term, which in fact will be assumed to vanish in t
next computations@nevertheless, we have to keep in min
that viscosity, as discussed before, plays an important ro
the choice of the boundary condition forv̂a

(0)(xW ,t) at t50].

The integrations overP(1), Q(1), andQ̃ab
(1) imply that

]ava
~1!~xW ,t !50, ~3.3a!

]av̂a
~1!~xW ,t !50, ~3.3b!

@]avb
~1!~xW ,t !1]bva

~1!~xW ,t !#uz5050. ~3.3c!

If perturbations are written in a form which satisfies the
relations, as we will do, then the fieldsP(1), Q(1), andQ̃ab

(1)

may be taken out fromS̃(1). We are interested to find expre
sions for va

(1)(xW ,t) and v̂a
(1)(xW ,t), which describe effective

degrees of freedom.
The singularity ofv̂a

(0)(xW ,t) at r'5Reat andz50, given
by Eq. ~2.32!, represents a ring that shrinks to a point at
→2`. One could imagine local fluctuations aroun

v̂a
(0)(xW ,t) given by variations of the vector field defined o

the ring,
u-

d

-

in

e

v̂a
~1!~xW ,t !5wa~u,t !d~r'2Reat!d~z!, ~3.4!

where u is the azimuthal angle in cylindrical coordinate
Sincewa(u,t)5wa(u12p,t), we may write the Fourier se
ries wa(u,t)5(n52`

` wa
(n)(t)exp(inu). The incompressibility

condition ~3.3b!, however, implies thatwa
(n)50, for nÞ0,

and wa
(0)(t)[dc(t)e3abxb /r' . Therefore we are only al-

lowed to consider amplitude fluctuations as

v̂a
~1!~xW ,t !5dc~ t !e3ab

xb

r'

d~r'2Reat!d~z!. ~3.5!

An important remark is that the above expression is va
exclusively for negative times, sincev̂a

(0)(xW ,t.0)50.
We could also take into account perturbations of the r

that would deform its shape, but a little reflection shows th
may be neglected. Consider, for instance, perturbations
the ring in thex-y plane, given by a fieldh(u,t):

v̂a~xW ,t !5wa~r' ,u;h!d„r'2Reat1h~u,t !…d~z!,
~3.6!

where the above amplitudewa is a functional ofh(u,t) and
satisfies towa(r' ,u;h50)5 ile3abxb /r' . Up to first order
in h(u,t) we may write

v̂a
~1!~xW ,t !5F E du8h~u8,t !

d

dh~u8,t !
wa~r' ,u;h50!G

3d~r'2Reat!d~z!1 ile3ab

xb

r'

h~u,t !

3d~1!~r'2Reat!d~z!. ~3.7!

The first term in the right-hand side of this equation may
absorbed by fluctuations given by Eq.~3.4!. Regarding the
second term, the same steps that led to Eq.~3.5! give us now
]uh(u,t)50, that is, the ring is deformed in thex-y plane
through uniform radius variations. It is clear, due to the d
rivative of thed function in Eq.~3.7!, that Eq.~3.5! is in fact
a more relevant contribution at lower wave numbers. T
same reasoning may be extended to generic perturbation
the ring’s shape. The approximation of neglecting deform
tions of the ring would be inconsistent if there were sm
scale fluctuations of the velocity field taking place in
neighborhood of the ring, as we would conclude from t
coupling of typev̂v in the action~3.2!. However, as will be
shown in a moment, small scale fluctuations of the veloc
field are contained only in some small compact region s
rounding the origin.

In view of the action of random forces at large leng
scales (k,L21, in Fourier space!, we keep, as a first ap
proximation, the linear dependence of the velocity field
the spatial coordinates, introducing fluctuations of the str
field as

va
~1!~xW ,t !5aa~ t !1vb~ t !eabg xg . ~3.8!

This linear expression is the only one compatible with t
constraints~3.3a! and ~3.3c!.
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If we takedc(t)5 const, it is not difficult to see, subst
tuting Eqs.~3.5! and ~3.8! in Eq. ~3.2!, that S̃(1) will not
depend onaa(t) or vb(t) for t,0. In other words, we have
defined a ‘‘zero mode’’ configuration, which would rend
the MSR path-integral completely independent of large sc
fluctuations of the velocity field. The solution of this pro
lem consists in considering generic time-dependent va
tions dc(t), precisely as we are doing, in accordance w
the usual procedure for the treatment of zero modes ass
ated to instantons@14#.

Relations~3.5! and~3.8! were both defined through argu
ments based on the assumption that fluctuations around
saddle point have to be local. We observe, however, that
do not exhaust, in principle, the effective form of perturb
tions, which may occur also at smaller length scales. In or
to achieve full expressions forv̂a

(1)(xW ,t) and va
(1)(xW ,t), it is

necessary to take a closer look at fluctuations associate
the dynamics of the actionS̃(1). Disregarding the coupling

v̂a
(0)(vb

(1)]bva
(1))—a self-consistent approximation, as w

will see—one may note thatS̃(1), which governs the random
behavior ofva

(1)(xW ,t), is the MSR field theory obtained from
the stochastic equations

] tva
~1!1vb

~0!]bva
~1!1vb

~1!]bva
~0!5n]2va

~1!2]aP~1!1 f a
~1!

~3.9!

and the constraints~3.3a! and ~3.3c!. The random force
f a

(1)(xW ,t), like f a(xW ,t), is defined by Eq.~2.2!. A criterion to
find the region of space where small scale fluctuations de
mined by Eq.~3.9! may effectively occur is based on a
analysis of the local power supplied to the fluid by the pr
sure and external forces. In the absence of perturbations
laminar flow is described by the velocity fieldva

(0)(xW ,t), with
power density

P05va
~0!~xW ,t !S 2]aP~0!~xW ,t !

1 ixbE d3xW8] [b,Da]g~ uxW8u!v̂g
~0!~xW8,t ! D

5@a213b~ t !2#ar'
2 28a3z2, ~3.10!

whereb(t) is given by Eq.~2.38! and P(0) is obtained ac-
cording to the discussion which leads to Eq.~2.14!. Taking
a.(D0l)1/2, the b(t)2 term in the above equation may b
neglected. We get

P 0.a3r'
2 28a3z2. ~3.11!

The lower bound (D0l)1/2 for a does not modify the
asymptotic form ofZ(l). We may check it by considering
any regularized version of Eq.~2.40!, assuming its measur
of integration is still dominated by the exponential factor
a→0. A more physical view on the lower bound fora,
which will become clear later, is that in order to evaluate
MSR functional Z(l), it is enough to take into accoun
saddle-point configurations which have support in the ti
interval Dt<(D0l)21/2, so that the power density~3.10!
turns out to be dominated by the symmetric part of the str
field.
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The extra supply of power density provided by the pre
sureP(1) and the stochastic forcef a

(1) is

P15^va
~1!~2]aP~1!1 f a

~1!!&. ~3.12!

Since the equations and constraints forva
(1)(xW ,t) are linear,

they are invariant under the substitutions

va
~1!~xW ,t !→D0

1/2va
~1!~xW ,t !,P~1!~xW ,t !→D0

1/2P~1!~xW ,t !,

f a
~1!~xW ,t !→D0

1/2f a
~1!~xW ,t !. ~3.13!

The factorD0 which appears in the two-point correlatio
function of the random forcef a

(1) is now replaced by unity.
From Eqs.~3.9! and ~3.12! we get, takingn→0,

D0
21P15

1

2
vb

~0!]b~^va
~1!va

~1!& !

1
1

2
~]bva

~0!1]avb
~0!!^va

~1!vb
~1!&. ~3.14!

At xW50 we obtain

D0
21P1~xW50!5~dab23da3db3!a^va

~1!~0!vb
~1!~0!&.

~3.15!

Since a.(D0l)1/2, we have va
(0)(xW ,t).a(xa23da3z),

which means that the stochastic equation~3.9! involves es-
sentially only two dimensional parameters:a and L.
Through simple dimensional analysis we may write

^va
~1!~xW !vb

~1!~xW !&[
Cab

a
, ~3.16!

whereCab is a dimensionless constant. We find, from Eq
~3.15! and ~3.16!,

P15cD0 , ~3.17!

wherec[C111C2222C33. From rotation symmetry around
the z axis, we haveC115C22, and consequentlyc52(C11
2C33). Due to the strong anisotropy in the system describ
by Eq. ~3.9!, we expect to havecÞ0.

Considering nowuxW uÞ0, we may use dimensional analy
sis once more to write for the first term in the right-hand s
of Eq. ~3.14!,

1

2
vb

~0!]b~^va
~1!va

~1!& !;~xa23da3z!
Ca

L
, ~3.18!

whereCa is a dimensionless constant. Thus, foruxuW!L, the
right-hand side of Eq.~3.14! is still dominated by the secon
term, leading us again to Eq.~3.17!. It is important to ob-
serve that in the analysis presented above, the derivativ
Eq. ~3.18! is assumed to be a smooth function of the spa
coordinates, a condition that may not be valid in some s
cific set of points, as in a vortex sheet.

Equation~3.17! is in fact a result similar to the one tha
would be obtained from a loose application of Novikov
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theorem@17#. We expect stronger fluctuations of the veloc
field for positions whereuP0u,uP1u, that is@18#,

ua3r'
2 28a3z2u,ucuD0 . ~3.19!

The above inequality is satisfied in a region of spa
bounded by three disjoint surfaces generated by the rev
tion of hiperbolas, as shown in Fig. 1. It is consistent
assume the surfaces have a well-defined meaning onl
length scales contained in the inertial range. Sincea
.(D0l)1/2, we can see that for large enough values ofl, the
surfaces enclose some regionV surrounding the origin, with
typical sizeR0;(ucuD0 /a3)1/2!R. The condition onl is
given by

c2

l3D0

!R4. ~3.20!

This relation defines, therefore, what is meant by the ‘‘la
l asymptotic limit.’’

To construct an effective picture out of these consid
ations, we imagine that inV additional fluctuations of

v̂a
(1)(xW ,t) andva

(1)(xW ,t) are superimposed to the previous e
pressions~3.5! and ~3.8!. Physical results are then obtaine
in the R0 /R→0 limit. In practical terms, this amounts t

rewriting S̃(1) in a form which explicitly takes into accoun
the length scales involved here,R0 andR. With this aim in
mind, it is useful to employ the following notation:

v̂a
~1!~xW ,t !5H v̂a

,~xW ,t ! if xW¹V

v̂a
.~xW ,t ! otherwise.

~3.21!

Analogous definitions are provided forva
(1)(xW ,t). We get,

from Eqs.~3.21! and ~3.2!,

FIG. 1. The three axisymmetric surfaces of revolution, I, II, a
III, which bound the support of small scale velocity fluctuatio

determined byS̃(1). As a→`, the surfaces asymptotically approac
the cone given byz25(x21y2)/8.
e
lu-

at

e

-

S̃~1!52 i E
xWPV

d3xWdtv̂a
.~] tva

.1vb
~0!]bva

.1vb
.]bva

~0!!

2 i E
xW¹V

d3xWdtv̂a
,~] tva

,1vb
~0!]bva

,1vb
,]bva

~0!!

1
1

2ExW ,xW8PV
dtd3xWd3xW8v̂a

.~xW ,t !Dab~xW2xW8!v̂b
.~xW8,t !

1
1

2ExW ,xW8¹V
dtd3xWd3xW8v̂a

,~xW ,t !Dab~xW2xW8!v̂b
,~xW8,t !

1E
xWPV,xW8¹V

dtd3xWd3xW8v̂a
.~xW ,t !Dab~xW2xW8!v̂b

,~xW8,t !.

~3.22!

According to the above discussion, we take nowv̂a
,(xW ,t) and

va
,(xW ,t) to be given by the former expressions~3.5! and

~3.8!, respectively. On the other hand, at smaller leng
scales, given byuxuW,R0, Eq. ~3.8! is not expected to repro
duce the behavior ofva

(1)(xW ,t) anymore, so that another pa
rametrization is needed, viz.,

va
.~xW ,t !5āa~ t !1bab~ t !xb . ~3.23!

The linear expressions for Eqs.~3.8! and ~3.23! are associ-
ated to the fact that we are considering velocity fluctuatio
to depend essentially on wave numbers given byk,L21 and
k;R0

21. Equation ~3.23! is not constrained by condition
~3.3c!, since it describes fluctuations at length scalesR0
!R. The surface]V which enclosesV may be viewed as a
vortex sheet for the velocity fieldva

(1)(xW ,t). In Appendix B,
it is shown thatV is necessarily a sphere of radiusR0,
whereas bab(t) is an antisymmetric tensor andaa(t)
5āa(t). As the coordinate-independent fieldaa(t)

@5āa(t)# may be absorbed by pressure fluctuations in
action ~3.2!, we may take

va
,~xW ,t !5vb~ t !eabgxg ,

~3.24!

va
.~xW ,t !5fb~ t !eabgxg ,

wherevb(t) andfb(t) are proportional to the vorticity out
side and insideV, respectively. At this point we note tha
Eqs.~2.32! and ~3.24! give

E d3xW v̂a
~0!~vb

~1!]bva
~1!!5E

xW¹V
d3xW v̂a

~0!~vb
,]bva

,!50,

~3.25!

proving the self-consistency of the simplification discuss
before Eq.~3.9!.

From Eq. ~3.24! we see thatva
(1)(xW ,t) gives no stretch.

This peculiar result is related to the fact that velocity flu
tuations at length scales larger thanR have to satisfy both the
constraints~3.3a! and~3.3c!, which makes the flow describe
by Eq. ~3.9! somewhat unusual, when compared to the o
commonly modeled in fluid dynamics, where conditio
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~3.3c! is not imposed. On a more physical ground, we m
say the constraint~3.3c! means that the symmetric part of th
strain field is ‘‘frozen’’ and does not fluctuate around t
saddle-point solution, which is a natural assumption, si
we take it to represent the slow degrees of freedom. We
note that there is no contradiction between Eq.~3.17! and Eq.
~3.24!, since a coordinate-independent field, as commen
before, is not written explicitly forva

,(xW ,t) andva
.(xW ,t).
e
e-
t

tio
o
d

,

y

e
so

d

We found expressions forva
,(xW ,t), va

.(xW ,t), and

v̂a
,(xW ,t), but nothing was said aboutv̂a

.(xW ,t). As a matter of
fact, this field will be replaced, as shown below, by line

combination of its momentscab(t)[*dxW v̂a
.(xW ,t)xb .

Substituting Eqs.~3.5! @5 v̂a
,(xW ,t)# and ~3.24! in Eq.

~3.22!, we find, after a lengthy and straightforward comp
tation,
Z~l!;E
~D0l!1/2

`

daE D@dc~ t !#D@r~ t !# )
a51

3

D@ca~ t !#D@fa~ t !#

3expH 2
p2D0R4

2L2

l2

a
12i E

2`

`

dt$c3~ t !@ḟ3~ t !12af3~ t !#1c1~ t !@ḟ1~ t !2af1~ t !#

1c2~ t !@ḟ2~ t !2af2~ t !#1pR2dc~ t !@ ṙ~ t !12ar~ t !#%2D0E
2`

`

dtF 4

L2 @c1
2~ t !1c2

2~ t !1c3
2~ t !#

12p2R2S R

L D 6

dc2~ t !G J , ~3.26!
ne-
es

he
t-

of
where

ca~ t !5
1

2
eabgE

xWPV
d3xW v̂b

.~xW ,t !xg for a51,2,

c3~ t !5pR2dc~ t !1
1

2ExWPV
d3xW @ v̂1

.~xW ,t !x22 v̂2
.~xW ,t !x1#,

~3.27!

r~ t !5v3~ t !2f3~ t !.

A simplifying prescription has been used to get Eq.~3.26!.
The exponential factor exp(at) has been removed from th
expression forv̂a

,(xW ,t) and the time integrals have been d
fined for 2`,t,`. The point in doing so is that we ge
Gaussian integrals overdc(t) andca(t), which may be ex-
actly computed. The only consequence of this approxima
is just a slight and unimportant deviation for the values
coupling constants. Taking into account the boundary con
tions r(6`)5fa(6`)50 in the resulting path integral
the time variable is then restricted to21/a<t<0, where the
saddle-point method is assumed to work@this follows natu-
rally from Eqs. ~2.32! and ~2.38!, which show that
n
f
i-

v̂a
(0)(xW ,t) and b(t) have lifetimes of the order of 1/a and

1/(2a), respectively#. We will have, therefore,

Z~l!;E
~D0l!1/2

`

daE D@r~ t !# )
a51

3

D@fa~ t !#

3expH 2
p2D0R4

2L2

l2

a
2

L2

4D0
E

21/a

0

dt

3F ḟ3
2~ t !14a2f3

2~ t !1ḟ1
2~ t !1a2f1

2~ t !1ḟ2
2~ t !

1a2f2
2~ t !12S L

RD 4

@ ṙ2~ t !14a2r2~ t !#G J , ~3.28!

an expression which involves a set of uncoupled o
dimensional harmonic oscillators with coordinat
f1, f2, f3, and r. Observe thatv1(t) and v2(t) do not
appear in Eq.~3.28!. This means that at length scales of t
order of R, velocity fluctuations are essentially axisymme
ric. As smaller length scales~of the order ofR0) are consid-
ered in the action, vorticity fluctuations in all directions
space become important. We may write Eq.~3.28! as
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Z~l!;E
~D0l!1/2

`

daE dr̄dr )
a51

3

df̄adfa

3expS 2
p2D0R4

2L2

l2

a DGS $f̄1uf1%;
1

a
,a,

L2

2D0
D

3GS $f̄2uf2%;
1

a
,a,

L2

2D0
DGS $f̄3uf3%;

1

a
,2a,

L2

2D0
D

3GX$r̄ur%;
1

a
,2a,

L2

D0
S L

RD 4C, ~3.29!

where

G~$x2ux1%;T,v,m!

[S mv

2psinh~vT! D
1/2

3expH 2
mv

2sinh~vT!
@~x2

21x1
2!cosh~vT!22x1x2#J

~3.30!

is the Euclidean propagator@19# for a particle of massm
moving, in a time intervalT, under the harmonic potentia
1
2 mv2x2. The initial and final coordinates arex1 and x2,
respectively. We obtain from Eqs.~3.29! and ~3.30! the
asymptotic result

Z~l!;E
~D0l!1/2

`

da
1

a2
expS 2

p2D0R4

2L2

l2

a D ;
1

l2
.

~3.31!

A simple way to understand the regularization of the
vergent expression~2.40! for Z(l) is that the additional
terms in the path-integral summation, associated to fluc
tions, are complex quantities, which produce an increas
number of canceling factors asa→`.

IV. SUBLEADING CORRECTIONS

The asymptotic result~3.31! does not give us any dimen
sional parameter which could characterize in a more deta
way the circulation PDF, providing further motivation for
comparison with the experiment. We will investigate th
-

a-
g

d

problem here, through the analysis of subleading correcti
for Z(l).

Recalling what has been done, we observe that to de
expression~3.31! the path integral forZ(l) has been written
in a form which depends on an ordinary integral overa. The
integrand is obtained from the saddle-point method, yield
a consistent result only in the time interval21/a<t<0. In
this way, fluctuations of the velocity field were complete
neglected fort<21/a @for t>0 they do not contribute to
Z(l) due to causality#. An improved form for Eq.~3.29!
may be found, thus, through the substitution

G~$x2ux1%;T,v,m!→P~x1!G~$x2ux1%;T,v,m!, ~4.1!

whereP(x1) is the probability density to havex5x1 at time
t1521/a. In other words, the effects of velocity fluctuation
for t<21/a are simply encoded in the PDFs forr andfa .
It is important to note that these random variables are rela
to the circulation at different length scales. We may write,
fact,

GR[2v3~ t !pR252@r~ t !1f3~ t !#pR2,
~4.2!

GR0

~a![2fa~ t !pR0
2.

Above,GR is the circulation evaluated for a circular loop o
radiusR in the x-y plane, whileGR0

(a) refers in an analogous

way to a loop of radiusR0 in a plane perpendicular to th
unit vectorx̂a . These loops are centered at the origin of t
coordinate system. From Eq.~3.30! we see that asa→`
only small fluctuations offa and v3 become important.
These fluctuations are associated to the core of the circ
tion PDF, which is modeled by a Gaussian distribution,

P~G r !;expS 2
G r

2

D~r !2D , ~4.3!

where ‘‘r ’’ gives the length scale. This form of the circula
tion PDF for smallG r is a phenomenological ingredient i
our analysis, well supported by numerical and real exp
ments@2,20#. Using Eqs.~4.1!–~4.3! we rewrite Eq.~3.29! as
Z~l!;E
~D0l!1/2

`

daE dr̄dr )
a51

3

df̄adfaexpS 2
p2D0R4

2L2

l2

a D S 12
4p2R4

D~R!2
v3

22
4p2R0

4

D~R0!2
@f1

21f2
21f3

2# D
3GS $f̄1uf1%;

1

a
,a,

L2

2D0
DGS $f̄2uf2%;

1

a
,a,

L2

2D0
DGS $f̄3uf3%;

1

a
,2a,

L2

2D0
DGX$r̄ur%;

1

a
,2a,

L2

D0
S L

RD 4C. ~4.4!
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In order to compute Eq.~4.4!, a very convenient simplifica
tion of Eq. ~3.30! follows from

x1[x1evT/22x2e2 vT/2,
~4.5!

x2[x1e2 vT/22x2evT/2,

which allows us to write

G~$x2ux1%;T,v,m!

[S mv

2psinh~vT! D
1/2

3expF2
mv

2sinh~vT! S 1

2
~x1!21

1

2
~x2!2D G . ~4.6!

It is also necessary to definev3 and fa in terms of
r1, r2, fa

1 , andfa
2 . We have

v35r1f35
1

2sinh~2!
@e2~r11f3

1!2e22~r21f3
2!#,

f35
1

2sinh~2!
@e2f3

12e22f3
2#, ~4.7!

f1,25
1

2sinh~1!
@ef1,2

1 2e21f1,2
2 #.

Substituting Eqs.~4.6! and~4.7! into Eq. ~4.4!, the Gaussian
integrals may be readily evaluated, giving

Z~l!;
1

l2S 12
b2

l2D , ~4.8!

where

b.@16sinh~2!#1/2D21.7.6D21. ~4.9!

In the computation of Eq.~4.8! we have assumed that

D~R0!R2

D~R!R0
2

@1, ~4.10!

which is clearly verified in practice@2#.
We may interpret Eq.~4.8! as the asymptotic approxima

tion to the LorentzianZ(l);(l21b2)21, which leads, in
its turn, to the stretched exponentialP(G);exp(2buGu). The
tail decaying parameterb is inversely proportional, there
fore, to the width of the PDF’s core, 2D. This agrees with
Migdal’s conjecture thatP(G) is a function of the scaling
variableG/A(2k21)/2k, as discussed in the Introduction. W
would find Eq.~4.9! once again if we had considered oth
axisymmetric contours, as two concentric loops of radiusR1
andR2, for instance. The PDF’s dependence on the minim
area has to be completely contained inD, showing that uni-
versal features of the circulation PDF are related essent
to the form of its core. The manifestation of universality n
only at the tails of PDFs seems to be in fact a property sha
by other turbulent systems, as discussed recently in the p
lem of a passive scalar advected by a random velocity fi
in one dimension@21#.
l

lly
t
d
b-
ld

A physical picture that may explain in more concre
terms the core-tail relationship for the circulation statisti
the result of the above computations, is in order. We m
imagine that the large scale forces generate smooth con
rations with small vorticity which are then fragmented in t
cascade process up to the inertial range scales. These a
‘‘soft’’ vortices that contribute to the core of the circulatio
PDF. With some probability, however, these vortices will
found in regions of the fluid characterized by high stretchin
Their vorticity will be, thus, strongly enhanced, producin
the intermittent configurations, described by the PDF ta
Since longitudinal velocity differences responsible f
stretching do not fluctuate so quickly as the transverse o
related to circulation, the correlations of the soft vortices
transposed to a different range of vorticity. This is the me
ing of b;D21, which implies that the same anomalous e
ponents determine the tails and the core of the circula
PDF.

It is clear, from the results just obtained, that our ta
within the reach of the saddle-point method, is at best
establish predictions suitable to experimental test, even if
lack a precise knowledge ofD(R), to which further and
complementary investigations have to be directed. O
might suppose thatD(R) could be derived, at the onset o
turbulence, from the viscous limit of the Navier-Stokes equ
tions, in such a way that the circulation PDF would keep
form of its core, while developing slowly decaying tails.
the viscous case, the circulation PDF is indeed Gaussian
D(R);R2 ~see Appendix C!, which is in strong disagree
ment with observations. Thus we do not expect smooth c
figurations of the velocity field to play any role in determi
ing the core of the circulation PDF, even in situations clo
to critical Reynolds numbers.

V. PARITY BREAKING EFFECTS

Let us study now possible asymmetries between the
and right tails of the circulation PDF, caused by parity brea
ing external conditions. We will investigate here two simp
models~which will be denoted henceforth by A and B, re
spectively!: a fluid in rotation with constant angular velocit

vW 5v ẑ and a fluid stirred by the forcef̃ a(xW ,t)5 f a(xW ,t)

1 f̄ a(xW ), where onlyf a(xW ,t) is random, being defined by Eq

~2.2!. The static componentf̄ a(xW ) is the one responsible fo
parity breaking effects. In these models we will assume t
the core of the circulation PDF is given by a shifted Gauss
distribution,

P~G!;expS 2
~G2G0!2

D2 D , ~5.1!

with G0!D, andD being the same as in the situation whe
parity breaking conditions are removed@v5 f̄ a(xW )50#. To
simplify the notation, we took out the scale dependence
G, G0, andD in Eq. ~5.1!.
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Model A

A turbulent rotating fluid, with angular velocityvW 5v ẑ, is
described by a slightly different version of the Navier-Stok
equations~2.1!, which takes into account the presence
noninertial effects:

] tva1vb]bva22ve3agvg2v2xa
'52]aP1n]2va1 f a .

~5.2!

The centrifugal forcev2xa
' may be absorbed by the pressu

term. Following all the steps carried in Sec. II, Eq.~2.36!
becomes now

ḃ12ab22av522pD0lS R

L D 2

e2atu~2t !, ~5.3!

which is solved by

b~ t !5v2
pD0l

2a S R

L D 2

e22autu, ~5.4!

while Eq. ~2.23! still yields the same solution forv̂a(xW ,t),
given by Eq.~2.32! @this is also true for model B; the dis
tinction between the models is due only to different solutio
for b(t)]. Using Eqs.~5.1! and~5.4!, we obtain the corrected
form of Eq. ~4.4!, which gives, after computations are don

Z~l!;exp~2 ilv!
1

l2F12expS 22
G0

2

D2D b2

l2G . ~5.5!

We find immediately from Eq.~5.5! the shift G→G1v in
the circulation PDF, as expected on physical grounds.
other consequence of Eq.~5.5! is that the tail decaying pa
rameterb gets multiplied by a factor which is related to th
shift G0 at the core of the circulation PDF. AsG0 increases,
the PDF tails become broader, apart from the overall shift
v.

Model B

Expanding the static part off̃ a(xW ,t) in a power series
aroundxW50, we will have, up to first order,

f̄ a~xW !5 f̄ a~0!1] [b f a]xb1] { b f a} xb , ~5.6!

where

] [b f a]5
1

2
~]b f a2]a f b!U

xW50

,

~5.7!

] { b f a} 5
1

2
~]b f a1]a f b!U

xW50

.

The above expansion is physically associated to parity bre
ing mechanisms defined in the integral scales. As a con
ture, we expect that the induced modification on the inst
ton solutions will lead to a model-independent description
parity breaking effects at the PDF tails.

Let us consider here the case where] [b f a][e3ab f 0, to
get equations which are still invariant under rotations arou
thez axis. The strength of parity symmetry breaking is giv
s
f

s

,

-

y

k-
c-
-
f

d

by the external parameterf 0. The first and third terms in the
right-hand side of Eq.~5.6! are absorbed by the pressure
the Navier-Stokes equations. Similarly to the analysis
model A, we write the equation forb(t),

ḃ12ab522pD0lS R

L D 2

e2atu~2t !1 f 0 , ~5.8!

the solution of which is

b~ t !5
f 0

2a
2

pD0l

2a S R

L D 2

e22autu. ~5.9!

From this we obtain, instead of Eq.~2.39!,

S̃~0!5
p2D0R4

2aL2 $~l1 i b̄ !21b̄2%, ~5.10!

where thep/2 rotationl→ il was taken into account, an
we have

b̄5
f 0L2

pD0R2
. ~5.11!

The result~5.10! may be quickly derived if we note that th
only implication of Eq.~5.9! is the shiftG→G1pR2f 0 /a in
the MSR action, leading toS̃(0)→S̃(0)1 ilpr 2f 0 /a.

Using now Eqs.~5.1! and ~5.10! to correct Eq.~4.4!, we
get, through a direct computation,

Z~l!;
1

~l1 i b̄ !21b̄2
2expS 22

G0
2

D2D b2

@~l1 i b̄ !21b̄2#2
.

~5.12!

From the above expression forZ(l) we find that the right
and left tails of the circulation PDF are described
P1(G);exp(2b1uGu) and P2(G);exp(2b2uGu), respec-
tively, with

b15b̄1FexpS 22
G0

2

D2D b21b̄2G 1/2

,

~5.13!

b252b̄1FexpS 22
G0

2

D2D b21b̄2G 1/2

.

It is interesting to note that the product of the tail decayi
parameters is approximately constant:

b1b25expS 22
G0

2

D2D b2.b2. ~5.14!

There is a compensation effect between the left and r
tails, as the parity breaking parameterf 0 is varied.

VI. CONCLUSION

The problem of circulation statistics in fully develope
turbulence was investigated through the Martin-Siggia-R
formalism. An infinite set of axisymmetric instanton sol
tions follows from the saddle-point equations, which are
beled the componentszz of the strain field, a partially an-
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nealed variable. In physical terms, this means that the n
diagonal components of the strain tensor, related
circulation, are in fact the random variables which fluctu
against the quasi-static background defined byszz. The
asymptotic behavior ofZ(l)5^exp(ilG)&, as well as its sub-
leading correction, were found, leading to a stretched ex
nential description of the tails of the circulation PDF, a res
in agreement with observational data. The core and the
of the circulation PDF were seen to be intrinsically relate
We estimate the tail decaying parameterb to be approxi-
mately equal to 7.6D21, with 2D being the width of the
PDF’s core. The numerical value in this estimate is related
the transition at timet;21/a between the saddle-poin
dominated regime and the free turbulent description of
fluid in the MSR formalism, which corresponds to havel
50 in Eq. ~2.6!. More generically, if the transition occurs a
time t;2g/a, whereg may be regarded as an adjustab
phenomenological parameter, then we will haveb
.4sinh(2g)1/2D21. The relationship betweenb and D im-
plies that universal features of the circulation statistics
determined essentially by the PDF’s core, which, howev
cannot be approached by means of the instanton techniq

Parity breaking effects were also studied, as the o
which occur in rotating systems or in fluids stirred by par
breaking external forces. Well-defined predictions were
rived, which we believe are within the reach of present n
merical techniques, like the method of direct numeri
simulations.

On the theoretical side, the important problem to be
dressed in future investigations is just the study of the cor
the circulation PDF. It is likely that some explicit characte
ization of vorticity filaments will be necessary in order
study matters such as anomalous exponents associated
termittency and the minimal area conjecture.
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APPENDIX A:
TIME-DEPENDENT TRANSLATIONS

The MSR actionS(l), Eq. ~2.6!, is invariant under the
group T of time-dependent translations between coordin
systems, defined through

xW→xW85xW2E
0

t

dtuW ~ t !,

va~xW ,t !→va8 ~xW ,t !5vaS xW1E
0

t

dtuW ~ t !,t D 2ua~ t !,

v̂a~xW ,t !→ v̂a8 ~xW ,t !5 v̂aS xW1E
0

t

dtuW ~ t !,t D , ~A1!

Q~xW ,t !→Q8~xW ,t !5QS xW1E
0

t

dtuW ~ t !,t D ,

P~xW ,t !→P8~xW ,t !5PS xW1E
0

t

dtuW ~ t !,t D 1u̇a~ t !xa .
n-
o
e

o-
lt
ils
.

to

e

e
r,
e.
s

-
-
l

-
of

in-

e

We observe thatT symmetry holds in the MSR formalism
whenever functionals of the velocity field are defined a
fixed instant of time, being also invariant under usual G
ilean tranformations@uW (t)5 const#.

Suppose we have a solution of the saddle-point equat
with va(xW50,t)5ca(t). A time-dependent translation ma
be applied to find another solutionva8 (xW ,t) with va8 (xW50,t)
50, which yields the same saddle-point action. Our task
just to determineuW (t) from

vaS E
0

t

dtuW ~ t !,t D 5ua~ t !. ~A2!

A simple iterative procedure may be devised to finduW (t). To
start, we note that Eq.~A2! gives

ua~0!5ca~0!. ~A3!

Taking now the time derivative of Eq.~A2!, we get

u̇a~ t !2ub~ t !]bvaS xW1E
0

t

dtuW ~ t !,t D U
xW50

2] t1
vaS E

0

t

dtuW ~ t !,t1D U
t15t

50. ~A4!

At t50, we have, therefore,

u̇a~0!2ub~0!]bva~xW ,0!uxW502] tva~0,t !u t5050, ~A5!

that is,

u̇a~0!5cb~0!]bva~xW ,0!uxW501ċa~0!. ~A6!

We may proceed in the same way, considering express
generated at each level of the iteration, to find time deri
tives up to any order and use them to construct the Ta
expansion ofua(t) aroundt50.

APPENDIX B:
DESCRIPTION OF THE VORTEX SHEET

We are taking fluctuations ofva
(1)(xW ,t) to have a discon-

tinuity at the surface]V, which enclosesV, a volume with
typical sizeR0. Note, in first place, that we may write

va
~1!~xW ,t !5va

,~xW ,t !@12F~xW ,t !#1va
.~xW ,t !F~xW ,t !,

~B1!

where va
,(xW ,t) and va

.(xW ,t) are given by Eqs.~3.8! and
~3.23!, respectively, and

F~xW ,t !5H 1 if xWPV

0 otherwise. ~B2!

The idea now is to investigate the consequences of the
compressibility constraint,]ava

(1)(xW ,t)50. This and Eq.
~B1! imply that
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]ava
,~xW ,t !5]ava

.~xW ,t !50,
~B3!

~va
,~xW ,t !2va

.~xW ,t !!na50.

Above,na5n̂• x̂a , wheren̂ is the unit normal vector point
ing outwards the surface]V. Writing na5Rabxb /uxW u,
where Rab is a rotation matrix, we get, from Eqs.~3.8!,
~3.23! and ~B3!,

xgRga
21$@ āa~ t !2aa~ t !#1@bab~ t !2easbvs~ t !#xb%50.

~B4!

This gives aa(t)5āa(t) and Rga
21@bab(t)2easbvs(t)#

5Mgb , whereM5M (xW ) is an antisymmetric matrix. Sinc
there is in any closed surface]V at least one point where
Rab5dab , we find thatbab(t) is also an antisymmetric ma
trix. ThereforeRab is constant on]V up to rotations around
xW , yielding n̂5xW /uxuW . To put it in another way,V is a sphere
of radiusR0. A convenient expression forbab(t) is

bab~ t !5fg~ t !eagb , ~B5!

allowing us to define Eq.~3.24!.

APPENDIX C:
CIRCULATION PDF IN THE VISCOUS LIMIT

To study the viscous limit, we just neglect the convecti
term in the Navier-Stokes equations. As a result, we ge
instructive example where the circulation PDF may be
actly found. The saddle-point equations~2.9! and ~2.10! are
now replaced by

i ~] tva2n]2va!5E d3xWDab~ uxW2xW8u!v̂b~xW8,t !, ~C1!

i ~] tv̂a1n]2v̂a!5le3ba

xb

r'

d~r'2R!d~z!d~ t !. ~C2!

The incompressibility constraints]ava5]av̂a50 have also
to be satisfied. Using Eqs.~C1! and ~C2!, the saddle-point
action in the MSR functional may be written as

S~l!52
l

2 R
c
vW •dxW . ~C3!

All we need to do, therefore, is to findva(xW' ,z50,t50)
[va(xW',0). Applying (] t1n]2) on Eq.~C1!, we will have,
integrating by parts and using Eq.~C2!,

@] t
22n2~]2!2#va~xW ,t !52Fa~xW ,t !, ~C4!

where
n
-

Fa~xW ,t !52lE d3xW8Dab~ uxW2xW8u!

3e3gb

xg8

r'8
d~r'8 2R!d~z8!d~ t !

.
D0l2pR2

L2
e3baxbexpS 2

xW2

L2D . ~C5!

In Fourier space, Eq.~C4! becomes

~v21n2k4!ṽa~kW ,v!5F̃a~kW !. ~C6!

We obtain, thus,

va~xW ,t !5
1

~2p!2E d3kWdv
F̃a~kW !

v21n2k4
exp~ ikW•xW1 ivt !

5
1

4pnE d3kW
F̃a~kW !

kW 2
exp~ ikW•xW2nk2utu!. ~C7!

Since we are interested to knowva(xW',0), it follows, from
Eq. ~C7!, that

va~xW',0!5
1

4pnE d3kW
F̃a~kW !

kW 2
exp~ ikW'•xW'!. ~C8!

Taking now Eq.~C5!, we get

F̃a~kW !5
D0lR2

2pL2 E d3xWe3baxbexpS 2 ikW•xW2
xW2

L2D
52 i e3bakb

D0lp1/2R2

4
expS 2

L2kW2

4 D . ~C9!

Substituting this result in Eq.~C8!, we will have

va~xW',0!5
pD0lR2

6n
e3baxb . ~C10!

Thus, from Eqs.~C3! and ~C10!, the saddle-point action is
computed as

S~l!52
l2D0p2R4

6n
. ~C11!

Performing now the analytical mappingl→ il, we find

Z~l!}expS 2
l2D0p2R4

6n D , ~C12!

which leads to a Gaussian statistics, described by the ci
lation PDF

P~G!5
1

p1/2D
expS 2

G2

D2D , ~C13!

where

D5S 2D0

3n D 1/2

pR2. ~C14!
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